一种改进的高斯线性Bandit环境下汤普森采样的遗憾界

Cem Kalkanli, Ayfer Özgür
{"title":"一种改进的高斯线性Bandit环境下汤普森采样的遗憾界","authors":"Cem Kalkanli, Ayfer Özgür","doi":"10.1109/ISIT44484.2020.9174371","DOIUrl":null,"url":null,"abstract":"Thompson sampling has been of significant recent interest due to its wide range of applicability to online learning problems and its good empirical and theoretical performance. In this paper, we analyze the performance of Thompson sampling in the canonical Gaussian linear bandit setting. We prove that the Bayesian regret of Thompson sampling in this setting is bounded by$O(\\sqrt {T\\log (T)} )$ improving on an earlier bound of $O(\\sqrt T \\log (T))$ n the literature for the case of the infinite, and compact action set. Our proof relies on a Cauchy–Schwarz type inequality which can be of interest in its own right.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Regret Bound for Thompson Sampling in the Gaussian Linear Bandit Setting\",\"authors\":\"Cem Kalkanli, Ayfer Özgür\",\"doi\":\"10.1109/ISIT44484.2020.9174371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thompson sampling has been of significant recent interest due to its wide range of applicability to online learning problems and its good empirical and theoretical performance. In this paper, we analyze the performance of Thompson sampling in the canonical Gaussian linear bandit setting. We prove that the Bayesian regret of Thompson sampling in this setting is bounded by$O(\\\\sqrt {T\\\\log (T)} )$ improving on an earlier bound of $O(\\\\sqrt T \\\\log (T))$ n the literature for the case of the infinite, and compact action set. Our proof relies on a Cauchy–Schwarz type inequality which can be of interest in its own right.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于其广泛适用于在线学习问题以及良好的经验和理论表现,汤普森抽样最近引起了人们的极大兴趣。在本文中,我们分析了汤普森采样在典型高斯线性强盗设置下的性能。我们证明了在这种情况下,汤普森抽样的贝叶斯遗憾限为$O(\sqrt {T\log (T)} )$,改进了文献中关于无限紧致作用集的先前的$O(\sqrt T \log (T))$界。我们的证明依赖于柯西-施瓦茨型不等式,它本身就很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Regret Bound for Thompson Sampling in the Gaussian Linear Bandit Setting
Thompson sampling has been of significant recent interest due to its wide range of applicability to online learning problems and its good empirical and theoretical performance. In this paper, we analyze the performance of Thompson sampling in the canonical Gaussian linear bandit setting. We prove that the Bayesian regret of Thompson sampling in this setting is bounded by$O(\sqrt {T\log (T)} )$ improving on an earlier bound of $O(\sqrt T \log (T))$ n the literature for the case of the infinite, and compact action set. Our proof relies on a Cauchy–Schwarz type inequality which can be of interest in its own right.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信