Feng Ding, Jian Huang, Yongji Wang, T. Matsuno, T. Fukuda
{"title":"滑模控制在可变形线性物体操纵中的减振","authors":"Feng Ding, Jian Huang, Yongji Wang, T. Matsuno, T. Fukuda","doi":"10.1080/01691864.2013.861769","DOIUrl":null,"url":null,"abstract":"Manipulation of deformable linear objects (DLOs) such as hoses, wires and so on is common in daily life and some manufacturing applications. Whereas, the DLOs are more challengeable to handle than rigid objects, as the uncertainty resulting from oscillation at the end of DLOs may cause failure in the operation. In this paper, based on the dynamic model of a DLO in our recent work, we proposed a position-based control strategy for eliminating the vibration at the end of DLOs. First, the simplified linear model of a DLO can be obtained by local linearization about the equilibrium. Then, by using Schur decomposition of matrices and linear transform of variables, the couplings between states are eliminated, and the actuated and underactuated parts of the DLO system are separated. Finally, based on the simplified linear model with a position constraint condition, a control strategy using sliding mode control (SMC) with exponential approach law is illustrated. The proposed control strategy is verified by numerical simulations. The simulation results show that the proposed method can damp the vibration effectively.","PeriodicalId":274201,"journal":{"name":"Proceedings of the 31st Chinese Control Conference","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Vibration damping in manipulation of deformable linear objects using sliding mode control\",\"authors\":\"Feng Ding, Jian Huang, Yongji Wang, T. Matsuno, T. Fukuda\",\"doi\":\"10.1080/01691864.2013.861769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manipulation of deformable linear objects (DLOs) such as hoses, wires and so on is common in daily life and some manufacturing applications. Whereas, the DLOs are more challengeable to handle than rigid objects, as the uncertainty resulting from oscillation at the end of DLOs may cause failure in the operation. In this paper, based on the dynamic model of a DLO in our recent work, we proposed a position-based control strategy for eliminating the vibration at the end of DLOs. First, the simplified linear model of a DLO can be obtained by local linearization about the equilibrium. Then, by using Schur decomposition of matrices and linear transform of variables, the couplings between states are eliminated, and the actuated and underactuated parts of the DLO system are separated. Finally, based on the simplified linear model with a position constraint condition, a control strategy using sliding mode control (SMC) with exponential approach law is illustrated. The proposed control strategy is verified by numerical simulations. The simulation results show that the proposed method can damp the vibration effectively.\",\"PeriodicalId\":274201,\"journal\":{\"name\":\"Proceedings of the 31st Chinese Control Conference\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st Chinese Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01691864.2013.861769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Chinese Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01691864.2013.861769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration damping in manipulation of deformable linear objects using sliding mode control
Manipulation of deformable linear objects (DLOs) such as hoses, wires and so on is common in daily life and some manufacturing applications. Whereas, the DLOs are more challengeable to handle than rigid objects, as the uncertainty resulting from oscillation at the end of DLOs may cause failure in the operation. In this paper, based on the dynamic model of a DLO in our recent work, we proposed a position-based control strategy for eliminating the vibration at the end of DLOs. First, the simplified linear model of a DLO can be obtained by local linearization about the equilibrium. Then, by using Schur decomposition of matrices and linear transform of variables, the couplings between states are eliminated, and the actuated and underactuated parts of the DLO system are separated. Finally, based on the simplified linear model with a position constraint condition, a control strategy using sliding mode control (SMC) with exponential approach law is illustrated. The proposed control strategy is verified by numerical simulations. The simulation results show that the proposed method can damp the vibration effectively.