在不同的可配置系统之间传递性能:一个案例研究

Luc Lesoil, Hugo Martin, M. Acher, Arnaud Blouin, J. Jézéquel
{"title":"在不同的可配置系统之间传递性能:一个案例研究","authors":"Luc Lesoil, Hugo Martin, M. Acher, Arnaud Blouin, J. Jézéquel","doi":"10.1145/3510466.3510486","DOIUrl":null,"url":null,"abstract":"Many research studies predict the performance of configurable software using machine learning techniques, thus requiring large amounts of data. Transfer learning aims to reduce the amount of data needed to train these models and has been successfully applied on different executing environments (hardware) or software versions. In this paper we investigate for the first time the idea of applying transfer learning between distinct configurable systems. We design a study involving two video encoders (namely x264 and x265) coming from different code bases. Our results are encouraging since transfer learning outperforms traditional learning for two performance properties (out of three). We discuss the open challenges to overcome for a more general application.","PeriodicalId":254559,"journal":{"name":"Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transferring Performance between Distinct Configurable Systems : A Case Study\",\"authors\":\"Luc Lesoil, Hugo Martin, M. Acher, Arnaud Blouin, J. Jézéquel\",\"doi\":\"10.1145/3510466.3510486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many research studies predict the performance of configurable software using machine learning techniques, thus requiring large amounts of data. Transfer learning aims to reduce the amount of data needed to train these models and has been successfully applied on different executing environments (hardware) or software versions. In this paper we investigate for the first time the idea of applying transfer learning between distinct configurable systems. We design a study involving two video encoders (namely x264 and x265) coming from different code bases. Our results are encouraging since transfer learning outperforms traditional learning for two performance properties (out of three). We discuss the open challenges to overcome for a more general application.\",\"PeriodicalId\":254559,\"journal\":{\"name\":\"Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510466.3510486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510466.3510486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

许多研究使用机器学习技术预测可配置软件的性能,因此需要大量的数据。迁移学习旨在减少训练这些模型所需的数据量,并已成功地应用于不同的执行环境(硬件)或软件版本。本文首次探讨了在不同可配置系统之间应用迁移学习的思想。我们设计了一项研究,涉及来自不同代码库的两个视频编码器(即x264和x265)。我们的结果令人鼓舞,因为迁移学习在两个性能属性上优于传统学习(在三个性能属性中)。我们讨论了更一般的应用程序需要克服的开放挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transferring Performance between Distinct Configurable Systems : A Case Study
Many research studies predict the performance of configurable software using machine learning techniques, thus requiring large amounts of data. Transfer learning aims to reduce the amount of data needed to train these models and has been successfully applied on different executing environments (hardware) or software versions. In this paper we investigate for the first time the idea of applying transfer learning between distinct configurable systems. We design a study involving two video encoders (namely x264 and x265) coming from different code bases. Our results are encouraging since transfer learning outperforms traditional learning for two performance properties (out of three). We discuss the open challenges to overcome for a more general application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信