联合稀疏重建方法的DOA估计和阵列配准

Thomas Wiese, L. Weiland, W. Utschick
{"title":"联合稀疏重建方法的DOA估计和阵列配准","authors":"Thomas Wiese, L. Weiland, W. Utschick","doi":"10.1109/SPAWC.2015.7227088","DOIUrl":null,"url":null,"abstract":"Two uniform linear arrays with inexactly known relative positions shall be used for coherent direction of arrival estimation. We show that in the narrowband case the estimation of the displacement parameter is well posed if the number of sources is known. Furthermore, we propose a fast registration method that estimates the unknown displacement parameter using a combination of sparse reconstruction algorithms for distributed compressed sensing and Newton's method.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DOA estimation and array registration with joint sparse reconstruction methods\",\"authors\":\"Thomas Wiese, L. Weiland, W. Utschick\",\"doi\":\"10.1109/SPAWC.2015.7227088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two uniform linear arrays with inexactly known relative positions shall be used for coherent direction of arrival estimation. We show that in the narrowband case the estimation of the displacement parameter is well posed if the number of sources is known. Furthermore, we propose a fast registration method that estimates the unknown displacement parameter using a combination of sparse reconstruction algorithms for distributed compressed sensing and Newton's method.\",\"PeriodicalId\":211324,\"journal\":{\"name\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2015.7227088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

两个相对位置不精确的均匀线性阵列应用于相干到达方向估计。我们证明了在窄带情况下,如果源的数量已知,位移参数的估计是很好的。在此基础上,提出了一种基于分布式压缩感知的稀疏重建算法与牛顿方法相结合的快速配准方法,对未知位移参数进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DOA estimation and array registration with joint sparse reconstruction methods
Two uniform linear arrays with inexactly known relative positions shall be used for coherent direction of arrival estimation. We show that in the narrowband case the estimation of the displacement parameter is well posed if the number of sources is known. Furthermore, we propose a fast registration method that estimates the unknown displacement parameter using a combination of sparse reconstruction algorithms for distributed compressed sensing and Newton's method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信