用合成数据训练自主无人机采样应用中的目标检测器

Gordon A. Christie, Zachary Kurtz, Kevin Huber, J. Massey, Ian Courtney, C. Gifford, J. Humphreys, Alfred Mayalu, Rebecca Williams, J. Hunnell, Bernard Collins
{"title":"用合成数据训练自主无人机采样应用中的目标检测器","authors":"Gordon A. Christie, Zachary Kurtz, Kevin Huber, J. Massey, Ian Courtney, C. Gifford, J. Humphreys, Alfred Mayalu, Rebecca Williams, J. Hunnell, Bernard Collins","doi":"10.1109/ICUAS.2018.8453336","DOIUrl":null,"url":null,"abstract":"Training accurate object detection models often requires a large amount training data. In some cases, limited imagery, from drastically different perspectives than the desired target view positions and angles, may be available for specific objects of interest. Training accurate models with this imagery may not be possible and require a lot of performance-limiting assumptions. However, it may be possible to use this limited imagery to create a 3D model of the targets and their surrounding area. In this paper, we explore training an object detector using only synthetic imagery to detect rooftop stacks for UAV sampling tasks. We show that this detector performs well on real imagery, and enables autonomous UAV sampling. We also note that this approach is general, and should extend to other objects.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Training Object Detectors with Synthetic Data for Autonomous UAV Sampling Applications\",\"authors\":\"Gordon A. Christie, Zachary Kurtz, Kevin Huber, J. Massey, Ian Courtney, C. Gifford, J. Humphreys, Alfred Mayalu, Rebecca Williams, J. Hunnell, Bernard Collins\",\"doi\":\"10.1109/ICUAS.2018.8453336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training accurate object detection models often requires a large amount training data. In some cases, limited imagery, from drastically different perspectives than the desired target view positions and angles, may be available for specific objects of interest. Training accurate models with this imagery may not be possible and require a lot of performance-limiting assumptions. However, it may be possible to use this limited imagery to create a 3D model of the targets and their surrounding area. In this paper, we explore training an object detector using only synthetic imagery to detect rooftop stacks for UAV sampling tasks. We show that this detector performs well on real imagery, and enables autonomous UAV sampling. We also note that this approach is general, and should extend to other objects.\",\"PeriodicalId\":246293,\"journal\":{\"name\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2018.8453336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

训练准确的目标检测模型往往需要大量的训练数据。在某些情况下,有限的图像,从与期望的目标视图位置和角度完全不同的角度,可能可用于特定的感兴趣的对象。用这种图像训练准确的模型可能是不可能的,并且需要许多性能限制的假设。然而,使用这些有限的图像来创建目标及其周围区域的3D模型是可能的。在本文中,我们探索仅使用合成图像训练目标检测器来检测无人机采样任务的屋顶堆栈。我们证明了该探测器在真实图像上表现良好,并实现了无人机的自主采样。我们还注意到,这种方法是通用的,应该扩展到其他对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Object Detectors with Synthetic Data for Autonomous UAV Sampling Applications
Training accurate object detection models often requires a large amount training data. In some cases, limited imagery, from drastically different perspectives than the desired target view positions and angles, may be available for specific objects of interest. Training accurate models with this imagery may not be possible and require a lot of performance-limiting assumptions. However, it may be possible to use this limited imagery to create a 3D model of the targets and their surrounding area. In this paper, we explore training an object detector using only synthetic imagery to detect rooftop stacks for UAV sampling tasks. We show that this detector performs well on real imagery, and enables autonomous UAV sampling. We also note that this approach is general, and should extend to other objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信