A. Medina-Rodríguez, Alejandro Díaz Martínez, R. S. Casarín
{"title":"非对称海沟对两层流体中振荡水柱装置效率的影响","authors":"A. Medina-Rodríguez, Alejandro Díaz Martínez, R. S. Casarín","doi":"10.2495/AFM180141","DOIUrl":null,"url":null,"abstract":"The effect of a submarine asymmetric trench on the efficiency of an Oscillating Water Column (OWC) device in a two-layer fluid is analyzed within the context of linearized water wave theory. Under the potential flow approach, the associated boundary value problem is solved by the matched eigenfunction expansion method. Numerical results for the OWC device efficiency for several physical parameters and configurations were obtained. Three different positions of the submarine trench were considered. The effects of the submarine trench depths and the distance of the trench from the surface piercing barrier on the efficiency of the OWC device are discussed in detail. In addition to the structural properties, the OWC performance is dependent on the fluid density ratio and the interface location. In order to verify the computational results, these are compared with results published in specialized literature and very good agreement was achieved.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"THE EFFECT OF AN ASYMMETRIC SUBMARINE TRENCH ON THE EFFICIENCY OF AN OSCILLATING WATER COLUMN DEVICE IN A TWO-LAYER FLUID\",\"authors\":\"A. Medina-Rodríguez, Alejandro Díaz Martínez, R. S. Casarín\",\"doi\":\"10.2495/AFM180141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of a submarine asymmetric trench on the efficiency of an Oscillating Water Column (OWC) device in a two-layer fluid is analyzed within the context of linearized water wave theory. Under the potential flow approach, the associated boundary value problem is solved by the matched eigenfunction expansion method. Numerical results for the OWC device efficiency for several physical parameters and configurations were obtained. Three different positions of the submarine trench were considered. The effects of the submarine trench depths and the distance of the trench from the surface piercing barrier on the efficiency of the OWC device are discussed in detail. In addition to the structural properties, the OWC performance is dependent on the fluid density ratio and the interface location. In order to verify the computational results, these are compared with results published in specialized literature and very good agreement was achieved.\",\"PeriodicalId\":261351,\"journal\":{\"name\":\"Advances in Fluid Mechanics XII\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Fluid Mechanics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/AFM180141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE EFFECT OF AN ASYMMETRIC SUBMARINE TRENCH ON THE EFFICIENCY OF AN OSCILLATING WATER COLUMN DEVICE IN A TWO-LAYER FLUID
The effect of a submarine asymmetric trench on the efficiency of an Oscillating Water Column (OWC) device in a two-layer fluid is analyzed within the context of linearized water wave theory. Under the potential flow approach, the associated boundary value problem is solved by the matched eigenfunction expansion method. Numerical results for the OWC device efficiency for several physical parameters and configurations were obtained. Three different positions of the submarine trench were considered. The effects of the submarine trench depths and the distance of the trench from the surface piercing barrier on the efficiency of the OWC device are discussed in detail. In addition to the structural properties, the OWC performance is dependent on the fluid density ratio and the interface location. In order to verify the computational results, these are compared with results published in specialized literature and very good agreement was achieved.