{"title":"基于生物驱动和奖励的类人运动学习","authors":"Minkwan Kim, Yoonsang Lee","doi":"10.1145/3588028.3603646","DOIUrl":null,"url":null,"abstract":"We propose a method of learning a policy for human-like locomotion via deep reinforcement learning based on a human anatomical model, muscle actuation, and biologically inspired rewards, without any inherent control rules or reference motions. Our main ideas involve providing a dense reward using metabolic energy consumption at every step during the initial stages of learning and then transitioning to a sparse reward as learning progresses, and adjusting the initial posture of the human model to facilitate the exploration of locomotion. Additionally, we compared and analyzed differences in learning outcomes across various settings other than the proposed method.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Human-like Locomotion Based on Biological Actuation and Rewards\",\"authors\":\"Minkwan Kim, Yoonsang Lee\",\"doi\":\"10.1145/3588028.3603646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of learning a policy for human-like locomotion via deep reinforcement learning based on a human anatomical model, muscle actuation, and biologically inspired rewards, without any inherent control rules or reference motions. Our main ideas involve providing a dense reward using metabolic energy consumption at every step during the initial stages of learning and then transitioning to a sparse reward as learning progresses, and adjusting the initial posture of the human model to facilitate the exploration of locomotion. Additionally, we compared and analyzed differences in learning outcomes across various settings other than the proposed method.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Human-like Locomotion Based on Biological Actuation and Rewards
We propose a method of learning a policy for human-like locomotion via deep reinforcement learning based on a human anatomical model, muscle actuation, and biologically inspired rewards, without any inherent control rules or reference motions. Our main ideas involve providing a dense reward using metabolic energy consumption at every step during the initial stages of learning and then transitioning to a sparse reward as learning progresses, and adjusting the initial posture of the human model to facilitate the exploration of locomotion. Additionally, we compared and analyzed differences in learning outcomes across various settings other than the proposed method.