电子商务系统中用户意图检测的分类。调查和建议

Marek Koniew
{"title":"电子商务系统中用户意图检测的分类。调查和建议","authors":"Marek Koniew","doi":"10.5815/ijieeb.2020.06.01","DOIUrl":null,"url":null,"abstract":"The personalized experience gets more and more attention these days. Many e-commerce businesses are looking for methods to deliver personalized service. Consumers are expecting, if not demanding, highly personalized experiences. Moreover, customers are typically willing to spend more when they receive such a custom-tailored service. A prerequisite to provide a genuinely personalized experience is to understand the customer. Intent detection is a new and challenging approach in modern e-commerce to understand the customer. We find that various aspects of customer intent detection can be tackled by leveraging tremendous recent recommendation systems' progress. In this work, we review existing works from different domains that can be re-used for customer intent detection in the e-commerce. Even though many methods are used, there is no comparison of available approaches. Based on a review of nearly 100 articles from 2015 until 2019, we propose a categorization of types of intent detection, personalization context, building a customer profile, and dynamic changes in user interests handling. We also summarize existing methods from applicability in the e-commerce domain, including the aspect of the General Data Protection Regulation requirements. The paper aims at the classification of applied techniques and highlights their advantages and disadvantages.","PeriodicalId":427770,"journal":{"name":"International Journal of Information Engineering and Electronic Business","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of the User's Intent Detection in Ecommerce systems – Survey and Recommendations\",\"authors\":\"Marek Koniew\",\"doi\":\"10.5815/ijieeb.2020.06.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The personalized experience gets more and more attention these days. Many e-commerce businesses are looking for methods to deliver personalized service. Consumers are expecting, if not demanding, highly personalized experiences. Moreover, customers are typically willing to spend more when they receive such a custom-tailored service. A prerequisite to provide a genuinely personalized experience is to understand the customer. Intent detection is a new and challenging approach in modern e-commerce to understand the customer. We find that various aspects of customer intent detection can be tackled by leveraging tremendous recent recommendation systems' progress. In this work, we review existing works from different domains that can be re-used for customer intent detection in the e-commerce. Even though many methods are used, there is no comparison of available approaches. Based on a review of nearly 100 articles from 2015 until 2019, we propose a categorization of types of intent detection, personalization context, building a customer profile, and dynamic changes in user interests handling. We also summarize existing methods from applicability in the e-commerce domain, including the aspect of the General Data Protection Regulation requirements. The paper aims at the classification of applied techniques and highlights their advantages and disadvantages.\",\"PeriodicalId\":427770,\"journal\":{\"name\":\"International Journal of Information Engineering and Electronic Business\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Engineering and Electronic Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijieeb.2020.06.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Engineering and Electronic Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijieeb.2020.06.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如今,个性化体验越来越受到人们的关注。许多电子商务企业都在寻找提供个性化服务的方法。消费者期待高度个性化的体验,如果不是苛求的话。此外,当顾客得到这种定制服务时,他们通常愿意花更多的钱。提供真正个性化体验的先决条件是了解客户。意图检测是现代电子商务中一种新的、具有挑战性的理解客户的方法。我们发现客户意图检测的各个方面都可以通过利用最近推荐系统的巨大进步来解决。在这项工作中,我们回顾了来自不同领域的现有工作,这些工作可以重新用于电子商务中的客户意图检测。尽管使用了许多方法,但没有对可用方法进行比较。基于对2015年至2019年近100篇文章的回顾,我们提出了意图检测、个性化上下文、建立客户档案和用户兴趣处理动态变化的分类。我们还从电子商务领域的适用性方面总结了现有的方法,包括《通用数据保护条例》的要求。本文旨在对应用技术进行分类,并突出其优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of the User's Intent Detection in Ecommerce systems – Survey and Recommendations
The personalized experience gets more and more attention these days. Many e-commerce businesses are looking for methods to deliver personalized service. Consumers are expecting, if not demanding, highly personalized experiences. Moreover, customers are typically willing to spend more when they receive such a custom-tailored service. A prerequisite to provide a genuinely personalized experience is to understand the customer. Intent detection is a new and challenging approach in modern e-commerce to understand the customer. We find that various aspects of customer intent detection can be tackled by leveraging tremendous recent recommendation systems' progress. In this work, we review existing works from different domains that can be re-used for customer intent detection in the e-commerce. Even though many methods are used, there is no comparison of available approaches. Based on a review of nearly 100 articles from 2015 until 2019, we propose a categorization of types of intent detection, personalization context, building a customer profile, and dynamic changes in user interests handling. We also summarize existing methods from applicability in the e-commerce domain, including the aspect of the General Data Protection Regulation requirements. The paper aims at the classification of applied techniques and highlights their advantages and disadvantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信