{"title":"量子卷积纠错码","authors":"H. Chau","doi":"10.1103/PhysRevA.58.905","DOIUrl":null,"url":null,"abstract":"I report two general methods to construct quantum convolutional codes for quantum registers with internal N states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.","PeriodicalId":351286,"journal":{"name":"Quantum Computing and Quantum Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Quantum Convolutional Error Correction Codes\",\"authors\":\"H. Chau\",\"doi\":\"10.1103/PhysRevA.58.905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I report two general methods to construct quantum convolutional codes for quantum registers with internal N states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.\",\"PeriodicalId\":351286,\"journal\":{\"name\":\"Quantum Computing and Quantum Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Computing and Quantum Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevA.58.905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Computing and Quantum Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.58.905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I report two general methods to construct quantum convolutional codes for quantum registers with internal N states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.