一种减少联邦学习中通信开销和过拟合的策略

Alex Barros, D. Rosário, E. Cerqueira, N. L. D. Fonseca
{"title":"一种减少联邦学习中通信开销和过拟合的策略","authors":"Alex Barros, D. Rosário, E. Cerqueira, N. L. D. Fonseca","doi":"10.5753/wgrs.2021.17181","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a framework to train machine learning models using decentralized data, especially unbalanced and non-iid. Adaptive methods can be used to accelerate convergence, reducing the number of rounds of local computation and communication to a centralized server. This paper proposes an adaptive controller to adapt the number of epochs needed that employs Poisson distribution to avoid overfitting of the aggregated model, promoting fast convergence. Our results indicate that increasing the local update of the model should be avoided, but yet some complementary mechanism is needed to model performance. We evaluate the impact of an increasing number of epochs of FedAVG and FedADAM.","PeriodicalId":434358,"journal":{"name":"Anais do XXVI Workshop de Gerência e Operação de Redes e Serviços (WGRS 2021)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A strategy to the reduction of communication overhead and overfitting in Federated Learning\",\"authors\":\"Alex Barros, D. Rosário, E. Cerqueira, N. L. D. Fonseca\",\"doi\":\"10.5753/wgrs.2021.17181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a framework to train machine learning models using decentralized data, especially unbalanced and non-iid. Adaptive methods can be used to accelerate convergence, reducing the number of rounds of local computation and communication to a centralized server. This paper proposes an adaptive controller to adapt the number of epochs needed that employs Poisson distribution to avoid overfitting of the aggregated model, promoting fast convergence. Our results indicate that increasing the local update of the model should be avoided, but yet some complementary mechanism is needed to model performance. We evaluate the impact of an increasing number of epochs of FedAVG and FedADAM.\",\"PeriodicalId\":434358,\"journal\":{\"name\":\"Anais do XXVI Workshop de Gerência e Operação de Redes e Serviços (WGRS 2021)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXVI Workshop de Gerência e Operação de Redes e Serviços (WGRS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wgrs.2021.17181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXVI Workshop de Gerência e Operação de Redes e Serviços (WGRS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wgrs.2021.17181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

联邦学习(FL)是一种使用分散数据训练机器学习模型的框架,特别是不平衡和非id数据。自适应方法可以用来加速收敛,减少本地计算和与中央服务器通信的轮数。本文提出了一种自适应控制器来适应所需的epoch数,该控制器采用泊松分布来避免聚合模型的过拟合,促进了快速收敛。我们的研究结果表明,应该避免增加模型的局部更新,但需要一些补充机制来提高模型的性能。我们评估了越来越多的fedag和FedADAM时代的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strategy to the reduction of communication overhead and overfitting in Federated Learning
Federated learning (FL) is a framework to train machine learning models using decentralized data, especially unbalanced and non-iid. Adaptive methods can be used to accelerate convergence, reducing the number of rounds of local computation and communication to a centralized server. This paper proposes an adaptive controller to adapt the number of epochs needed that employs Poisson distribution to avoid overfitting of the aggregated model, promoting fast convergence. Our results indicate that increasing the local update of the model should be avoided, but yet some complementary mechanism is needed to model performance. We evaluate the impact of an increasing number of epochs of FedAVG and FedADAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信