几何模型的反演算法

M. Mäntylä
{"title":"几何模型的反演算法","authors":"M. Mäntylä","doi":"10.1145/800064.801262","DOIUrl":null,"url":null,"abstract":"Instead of storing boundary models of solids directly into a data base, it would be advantageous to map them first into a simpler form. This approach calls for a procedure called in this paper the inversion algorithm of a geometric model. We present and analyze an inversion algorithm which constructs a sequence of Euler Operators capable of creating a given boundary representation. The algorithm is completely based on the use of Euler Operators enabling us to keep the algorithm simple and to hide implementation and data structure details.","PeriodicalId":276450,"journal":{"name":"Proceedings of the 9th annual conference on Computer graphics and interactive techniques","volume":"61 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An inversion algorithm for geometric models\",\"authors\":\"M. Mäntylä\",\"doi\":\"10.1145/800064.801262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instead of storing boundary models of solids directly into a data base, it would be advantageous to map them first into a simpler form. This approach calls for a procedure called in this paper the inversion algorithm of a geometric model. We present and analyze an inversion algorithm which constructs a sequence of Euler Operators capable of creating a given boundary representation. The algorithm is completely based on the use of Euler Operators enabling us to keep the algorithm simple and to hide implementation and data structure details.\",\"PeriodicalId\":276450,\"journal\":{\"name\":\"Proceedings of the 9th annual conference on Computer graphics and interactive techniques\",\"volume\":\"61 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800064.801262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800064.801262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

与其将实体的边界模型直接存储到数据库中,不如先将它们映射成更简单的形式。这种方法需要一个在本文中称为几何模型反演算法的过程。我们提出并分析了一种反演算法,该算法构造了一个能够创建给定边界表示的欧拉算子序列。该算法完全基于欧拉算子的使用,使我们能够保持算法的简单性,并隐藏实现和数据结构的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inversion algorithm for geometric models
Instead of storing boundary models of solids directly into a data base, it would be advantageous to map them first into a simpler form. This approach calls for a procedure called in this paper the inversion algorithm of a geometric model. We present and analyze an inversion algorithm which constructs a sequence of Euler Operators capable of creating a given boundary representation. The algorithm is completely based on the use of Euler Operators enabling us to keep the algorithm simple and to hide implementation and data structure details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信