A. Raza, Y. Zaki, Thomas Pötsch, Jay Chen, Lakshmi Subramanian
{"title":"极速网页缓存,更快的网页浏览","authors":"A. Raza, Y. Zaki, Thomas Pötsch, Jay Chen, Lakshmi Subramanian","doi":"10.1145/2785956.2790032","DOIUrl":null,"url":null,"abstract":"Modern web pages are very complex; each web page consists of hundreds of objects that are linked from various servers all over the world. While mechanisms such as caching reduce the overall number of end-to-end requests saving bandwidth and loading time, there is still a large portion of content that is re-fetched -- despite not having changed. In this demo, we present Extreme Cache, a web caching architecture that enhances the web browsing experience through a smart pre-fetching engine. Our extreme cache tries to predict the rate of change of web page objects to bring cacheable content closer to the user.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extreme Web Caching for Faster Web Browsing\",\"authors\":\"A. Raza, Y. Zaki, Thomas Pötsch, Jay Chen, Lakshmi Subramanian\",\"doi\":\"10.1145/2785956.2790032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern web pages are very complex; each web page consists of hundreds of objects that are linked from various servers all over the world. While mechanisms such as caching reduce the overall number of end-to-end requests saving bandwidth and loading time, there is still a large portion of content that is re-fetched -- despite not having changed. In this demo, we present Extreme Cache, a web caching architecture that enhances the web browsing experience through a smart pre-fetching engine. Our extreme cache tries to predict the rate of change of web page objects to bring cacheable content closer to the user.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2790032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2790032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern web pages are very complex; each web page consists of hundreds of objects that are linked from various servers all over the world. While mechanisms such as caching reduce the overall number of end-to-end requests saving bandwidth and loading time, there is still a large portion of content that is re-fetched -- despite not having changed. In this demo, we present Extreme Cache, a web caching architecture that enhances the web browsing experience through a smart pre-fetching engine. Our extreme cache tries to predict the rate of change of web page objects to bring cacheable content closer to the user.