NIWPT:基于信道状态信息的NLOS识别

Chunyuan Tian, Jiang Yu, Jun Chang, Yonghong Zhang
{"title":"NIWPT:基于信道状态信息的NLOS识别","authors":"Chunyuan Tian, Jiang Yu, Jun Chang, Yonghong Zhang","doi":"10.1117/12.2559766","DOIUrl":null,"url":null,"abstract":"With the development of wireless technology, Wi-Fi devices are extensively deployed in indoor environments. This fosters the development of Wi-Fi signal-based services and applications, e.g., indoor intrusion detection, human gesture recognition, indoor localization. However, the indoor environments are often complex and variable, Wi-Fi signals from transmitters through multiple paths to reach receivers. There is a large number of Non-Line-Of-Sight (NLOS) paths between the transmitter and the receiver, which causes seriously signal fading, deteriorating the quality of communication links, decreasing the accuracy of recognition application, and increasing the complexity of systems. In this study, an NLOS identification based on the wavelet packet transform (NIWPT) method is proposed. First, NIWPT collects raw channel state information (CSI) signals on the physical layer in current links. Then, NIWPT applies threelayer wavelet packet decomposition on the amplitude of CSI. A set of the wavelet packet coefficient, wavelet packet energy spectrum, information entropy, and logarithmic energy entropy as a feature vector is acquired. After that, the support vector machine is utilized to identify NLOS paths in the current links. Compared with other methods, NIWPT does not need to pre-process the raw CSI signals, it not only maximally reserves influence of the environment on the propagation signal, but also reflects the indoor environment more truly. The experimental results indicate that the recognition accuracy rate of the NIWPT method is 96.23% and 94.75% in the dynamic and static environments, respectively. It proves that the proposed method can effectively identify NLOS paths and has high identification accuracy and universality.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"11384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIWPT: NLOS identification based on channel state information\",\"authors\":\"Chunyuan Tian, Jiang Yu, Jun Chang, Yonghong Zhang\",\"doi\":\"10.1117/12.2559766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of wireless technology, Wi-Fi devices are extensively deployed in indoor environments. This fosters the development of Wi-Fi signal-based services and applications, e.g., indoor intrusion detection, human gesture recognition, indoor localization. However, the indoor environments are often complex and variable, Wi-Fi signals from transmitters through multiple paths to reach receivers. There is a large number of Non-Line-Of-Sight (NLOS) paths between the transmitter and the receiver, which causes seriously signal fading, deteriorating the quality of communication links, decreasing the accuracy of recognition application, and increasing the complexity of systems. In this study, an NLOS identification based on the wavelet packet transform (NIWPT) method is proposed. First, NIWPT collects raw channel state information (CSI) signals on the physical layer in current links. Then, NIWPT applies threelayer wavelet packet decomposition on the amplitude of CSI. A set of the wavelet packet coefficient, wavelet packet energy spectrum, information entropy, and logarithmic energy entropy as a feature vector is acquired. After that, the support vector machine is utilized to identify NLOS paths in the current links. Compared with other methods, NIWPT does not need to pre-process the raw CSI signals, it not only maximally reserves influence of the environment on the propagation signal, but also reflects the indoor environment more truly. The experimental results indicate that the recognition accuracy rate of the NIWPT method is 96.23% and 94.75% in the dynamic and static environments, respectively. It proves that the proposed method can effectively identify NLOS paths and has high identification accuracy and universality.\",\"PeriodicalId\":415097,\"journal\":{\"name\":\"International Conference on Signal Processing Systems\",\"volume\":\"11384 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2559766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2559766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无线技术的发展,Wi-Fi设备被广泛地部署在室内环境中。这促进了基于Wi-Fi信号的服务和应用的发展,例如室内入侵检测、人体手势识别、室内定位。然而,室内环境往往复杂多变,Wi-Fi信号从发射器经过多条路径到达接收器。在发射端和接收端之间存在大量的非视距(Non-Line-Of-Sight, NLOS)路径,造成严重的信号衰落,使通信链路质量恶化,降低了识别应用的精度,增加了系统的复杂性。本文提出了一种基于小波包变换(NIWPT)的非视点识别方法。首先,NIWPT在当前链路的物理层上收集原始通道状态信息(CSI)信号。然后,NIWPT对CSI的幅值进行三层小波包分解。得到一组小波包系数、小波包能谱、信息熵和对数能量熵作为特征向量。然后,利用支持向量机识别当前链路中的NLOS路径。与其他方法相比,NIWPT不需要对原始CSI信号进行预处理,不仅最大限度地保留了环境对传播信号的影响,而且更真实地反映了室内环境。实验结果表明,NIWPT方法在动态和静态环境下的识别准确率分别为96.23%和94.75%。结果表明,该方法能够有效地识别非近距离目标路径,具有较高的识别精度和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NIWPT: NLOS identification based on channel state information
With the development of wireless technology, Wi-Fi devices are extensively deployed in indoor environments. This fosters the development of Wi-Fi signal-based services and applications, e.g., indoor intrusion detection, human gesture recognition, indoor localization. However, the indoor environments are often complex and variable, Wi-Fi signals from transmitters through multiple paths to reach receivers. There is a large number of Non-Line-Of-Sight (NLOS) paths between the transmitter and the receiver, which causes seriously signal fading, deteriorating the quality of communication links, decreasing the accuracy of recognition application, and increasing the complexity of systems. In this study, an NLOS identification based on the wavelet packet transform (NIWPT) method is proposed. First, NIWPT collects raw channel state information (CSI) signals on the physical layer in current links. Then, NIWPT applies threelayer wavelet packet decomposition on the amplitude of CSI. A set of the wavelet packet coefficient, wavelet packet energy spectrum, information entropy, and logarithmic energy entropy as a feature vector is acquired. After that, the support vector machine is utilized to identify NLOS paths in the current links. Compared with other methods, NIWPT does not need to pre-process the raw CSI signals, it not only maximally reserves influence of the environment on the propagation signal, but also reflects the indoor environment more truly. The experimental results indicate that the recognition accuracy rate of the NIWPT method is 96.23% and 94.75% in the dynamic and static environments, respectively. It proves that the proposed method can effectively identify NLOS paths and has high identification accuracy and universality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信