半有序树的无损压缩

{"title":"半有序树的无损压缩","authors":"","doi":"10.4018/ijarb.290341","DOIUrl":null,"url":null,"abstract":"In this paper, authors are interested in the problem of lossless compression of unlabeled semi-ordered trees. Semi-ordered trees are a class of trees that present an order between some sibling while some other sibling are unordered. They offer a wide possibility of applications especially for the representation of plants architecture. Authors show that these trees present remarkable compression properties covering those of ordered and unordered trees. To illustrate this approach, authors apply these notions to a particular class of semi-ordered trees which is the most studied branching structure particularly for a botanical motivation, namely axial trees.","PeriodicalId":350020,"journal":{"name":"International Journal of Applied Research in Bioinformatics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossless Compression of Semi-Ordered Trees\",\"authors\":\"\",\"doi\":\"10.4018/ijarb.290341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, authors are interested in the problem of lossless compression of unlabeled semi-ordered trees. Semi-ordered trees are a class of trees that present an order between some sibling while some other sibling are unordered. They offer a wide possibility of applications especially for the representation of plants architecture. Authors show that these trees present remarkable compression properties covering those of ordered and unordered trees. To illustrate this approach, authors apply these notions to a particular class of semi-ordered trees which is the most studied branching structure particularly for a botanical motivation, namely axial trees.\",\"PeriodicalId\":350020,\"journal\":{\"name\":\"International Journal of Applied Research in Bioinformatics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Research in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijarb.290341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Research in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijarb.290341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究无标记半有序树的无损压缩问题。半有序树是一类树,在一些兄弟姐妹之间表示有序,而另一些兄弟姐妹是无序的。它们提供了广泛的应用可能性,特别是在植物建筑的表现方面。作者表明,这些树具有显著的压缩特性,覆盖了有序树和无序树。为了说明这种方法,作者将这些概念应用于一类特殊的半有序树,这是研究最多的分支结构,特别是植物学动机,即轴向树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossless Compression of Semi-Ordered Trees
In this paper, authors are interested in the problem of lossless compression of unlabeled semi-ordered trees. Semi-ordered trees are a class of trees that present an order between some sibling while some other sibling are unordered. They offer a wide possibility of applications especially for the representation of plants architecture. Authors show that these trees present remarkable compression properties covering those of ordered and unordered trees. To illustrate this approach, authors apply these notions to a particular class of semi-ordered trees which is the most studied branching structure particularly for a botanical motivation, namely axial trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信