{"title":"人群计数的多重扩张网络","authors":"Shuheng Wang, Hanli Wang, Qinyu Li","doi":"10.1145/3338533.3366687","DOIUrl":null,"url":null,"abstract":"With the growth of urban population, crowd analysis has become an important and necessary task in the field of computer vision. The goal of crowd counting, which is a subfield of crowd analysis, is to count the number of people in an image or a zone of a picture. Due to the problems like heavy occlusions, perspective and luminous intensity variations, it is still extremely challenging to achieve crowd counting. Recent state-of-the-art approaches are mainly designed with convolutional neural networks to generate density maps. In this work, Multi-Dilation Network (MDNet) is proposed to solve the problem of crowd counting in congested scenes. The MDNet is made up of two parts: a VGG-16 based front end for feature extraction and a back end containing multi-dilation blocks to generate density maps. Especially, a multi-dilation block has four branches which are used to collect features in different sizes. By using dilated convolutional operations, the multi-dilation block could obtain various features while the maximum kernel size is still 3 x 3. The experiments on two challenging crowd counting datasets, UCF_CC_50 and ShanghaiTech, have shown that the proposed MDNet achieves better performances than other state-of-the-art methods, with a lower mean absolute error and mean squared error. Comparing to the network with multi-scale blocks which adopt larger kernels to extract features, MDNet still gains competitive performances with fewer model parameters.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Dilation Network for Crowd Counting\",\"authors\":\"Shuheng Wang, Hanli Wang, Qinyu Li\",\"doi\":\"10.1145/3338533.3366687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of urban population, crowd analysis has become an important and necessary task in the field of computer vision. The goal of crowd counting, which is a subfield of crowd analysis, is to count the number of people in an image or a zone of a picture. Due to the problems like heavy occlusions, perspective and luminous intensity variations, it is still extremely challenging to achieve crowd counting. Recent state-of-the-art approaches are mainly designed with convolutional neural networks to generate density maps. In this work, Multi-Dilation Network (MDNet) is proposed to solve the problem of crowd counting in congested scenes. The MDNet is made up of two parts: a VGG-16 based front end for feature extraction and a back end containing multi-dilation blocks to generate density maps. Especially, a multi-dilation block has four branches which are used to collect features in different sizes. By using dilated convolutional operations, the multi-dilation block could obtain various features while the maximum kernel size is still 3 x 3. The experiments on two challenging crowd counting datasets, UCF_CC_50 and ShanghaiTech, have shown that the proposed MDNet achieves better performances than other state-of-the-art methods, with a lower mean absolute error and mean squared error. Comparing to the network with multi-scale blocks which adopt larger kernels to extract features, MDNet still gains competitive performances with fewer model parameters.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the growth of urban population, crowd analysis has become an important and necessary task in the field of computer vision. The goal of crowd counting, which is a subfield of crowd analysis, is to count the number of people in an image or a zone of a picture. Due to the problems like heavy occlusions, perspective and luminous intensity variations, it is still extremely challenging to achieve crowd counting. Recent state-of-the-art approaches are mainly designed with convolutional neural networks to generate density maps. In this work, Multi-Dilation Network (MDNet) is proposed to solve the problem of crowd counting in congested scenes. The MDNet is made up of two parts: a VGG-16 based front end for feature extraction and a back end containing multi-dilation blocks to generate density maps. Especially, a multi-dilation block has four branches which are used to collect features in different sizes. By using dilated convolutional operations, the multi-dilation block could obtain various features while the maximum kernel size is still 3 x 3. The experiments on two challenging crowd counting datasets, UCF_CC_50 and ShanghaiTech, have shown that the proposed MDNet achieves better performances than other state-of-the-art methods, with a lower mean absolute error and mean squared error. Comparing to the network with multi-scale blocks which adopt larger kernels to extract features, MDNet still gains competitive performances with fewer model parameters.