自主移动机器人区域清理环境视觉分析算法

Maksim E. Beliakov, S. Diane
{"title":"自主移动机器人区域清理环境视觉分析算法","authors":"Maksim E. Beliakov, S. Diane","doi":"10.32362/2500-316x-2023-11-4-26-35","DOIUrl":null,"url":null,"abstract":"Objectives. At present, increasing rates of pollution of vast areas by various types of household waste are becoming an increasingly serious problem. In this connection, the creation of a robotic complex capable of performing autonomous litter collection functions becomes an urgent need. One of the key components of such a complex comprises a vision system for detecting and interacting with target objects. The purpose of this work is to develop the underlying algorithmics for the vision system of robots executing area cleaning functions.Methods. Within the framework ofthe proposed structure ofthe system for visual analysis ofthe external environment, algorithms for detecting and classifying objects of various appearance have been developed using convolutional neural networks. The neural network detector was set up by gradient descent on the open dataset of TACO training samples. To determine the geometric parameters of a surface in the field of view of the robot and estimate the coordinates of objects on the ground, a homography matrix was formed to take into account information about the characteristics and location of the video camera.Results. The developed software and algorithms for a mobile robot equipped with a monocular video camera are capable of implementing the functions of neural network detection and classification of litter objects in the frame, as well as projection of found objects on a terrain map for their subsequent collection.Conclusions. Experimental studies have shown that the developed system of visual analysis of the external environment of an autonomous mobile robot has sufficient efficiency to solve the tasks of detecting litter in the field of view of an autonomous mobile robot.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for the visual analysis of an environment by an autonomous mobile robot for area cleanup\",\"authors\":\"Maksim E. Beliakov, S. Diane\",\"doi\":\"10.32362/2500-316x-2023-11-4-26-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. At present, increasing rates of pollution of vast areas by various types of household waste are becoming an increasingly serious problem. In this connection, the creation of a robotic complex capable of performing autonomous litter collection functions becomes an urgent need. One of the key components of such a complex comprises a vision system for detecting and interacting with target objects. The purpose of this work is to develop the underlying algorithmics for the vision system of robots executing area cleaning functions.Methods. Within the framework ofthe proposed structure ofthe system for visual analysis ofthe external environment, algorithms for detecting and classifying objects of various appearance have been developed using convolutional neural networks. The neural network detector was set up by gradient descent on the open dataset of TACO training samples. To determine the geometric parameters of a surface in the field of view of the robot and estimate the coordinates of objects on the ground, a homography matrix was formed to take into account information about the characteristics and location of the video camera.Results. The developed software and algorithms for a mobile robot equipped with a monocular video camera are capable of implementing the functions of neural network detection and classification of litter objects in the frame, as well as projection of found objects on a terrain map for their subsequent collection.Conclusions. Experimental studies have shown that the developed system of visual analysis of the external environment of an autonomous mobile robot has sufficient efficiency to solve the tasks of detecting litter in the field of view of an autonomous mobile robot.\",\"PeriodicalId\":282368,\"journal\":{\"name\":\"Russian Technological Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2500-316x-2023-11-4-26-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2500-316x-2023-11-4-26-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。目前,各种生活垃圾对广大地区的污染日益严重,成为一个日益严重的问题。在这方面,创造一个能够执行自动垃圾收集功能的机器人综合体成为迫切需要。该复合体的关键组成部分之一包括用于检测目标物体并与之交互的视觉系统。本工作的目的是为执行区域清洁功能的机器人视觉系统开发底层算法。在提出的外部环境视觉分析系统结构框架内,使用卷积神经网络开发了用于检测和分类各种外观对象的算法。在开放的TACO训练样本数据集上,采用梯度下降法建立神经网络检测器。为了确定机器人视场中表面的几何参数和估计地面上物体的坐标,考虑了摄像机的特征和位置信息,形成了一个单应性矩阵。所开发的单目摄像机移动机器人软件和算法,能够实现对框架内的垃圾物进行神经网络检测和分类,并将发现的物体投影到地形图上,以便后续收集。实验研究表明,所开发的自主移动机器人外部环境视觉分析系统具有足够的效率,可以解决自主移动机器人视场内垃圾的检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for the visual analysis of an environment by an autonomous mobile robot for area cleanup
Objectives. At present, increasing rates of pollution of vast areas by various types of household waste are becoming an increasingly serious problem. In this connection, the creation of a robotic complex capable of performing autonomous litter collection functions becomes an urgent need. One of the key components of such a complex comprises a vision system for detecting and interacting with target objects. The purpose of this work is to develop the underlying algorithmics for the vision system of robots executing area cleaning functions.Methods. Within the framework ofthe proposed structure ofthe system for visual analysis ofthe external environment, algorithms for detecting and classifying objects of various appearance have been developed using convolutional neural networks. The neural network detector was set up by gradient descent on the open dataset of TACO training samples. To determine the geometric parameters of a surface in the field of view of the robot and estimate the coordinates of objects on the ground, a homography matrix was formed to take into account information about the characteristics and location of the video camera.Results. The developed software and algorithms for a mobile robot equipped with a monocular video camera are capable of implementing the functions of neural network detection and classification of litter objects in the frame, as well as projection of found objects on a terrain map for their subsequent collection.Conclusions. Experimental studies have shown that the developed system of visual analysis of the external environment of an autonomous mobile robot has sufficient efficiency to solve the tasks of detecting litter in the field of view of an autonomous mobile robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信