利用条件独立性进行聚类分析

T. Szántai, E. Kovács
{"title":"利用条件独立性进行聚类分析","authors":"T. Szántai, E. Kovács","doi":"10.1109/SACI.2013.6608986","DOIUrl":null,"url":null,"abstract":"In this paper we introduce an unsupervised learning algorithm for discovering some of the conditional independences between the attributes (features) which characterize the elements of a statistical population. Using this algorithm we obtain a graph structure which makes possible the clustering of data elements into classes in an efficient way. In the same time our algorithm gives a new method for reducing the dimension of the feature space. In this way also the visualization of the clusters becomes possible in lower dimensional cases. The results of this type of clustering can be used also for classification of new data elements. We show how the method works on real problems and compare our results to those of other algorithms which are applied to the same dataset.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster analysis by exploiting conditional independences\",\"authors\":\"T. Szántai, E. Kovács\",\"doi\":\"10.1109/SACI.2013.6608986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce an unsupervised learning algorithm for discovering some of the conditional independences between the attributes (features) which characterize the elements of a statistical population. Using this algorithm we obtain a graph structure which makes possible the clustering of data elements into classes in an efficient way. In the same time our algorithm gives a new method for reducing the dimension of the feature space. In this way also the visualization of the clusters becomes possible in lower dimensional cases. The results of this type of clustering can be used also for classification of new data elements. We show how the method works on real problems and compare our results to those of other algorithms which are applied to the same dataset.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一种无监督学习算法,用于发现表征统计总体元素的属性(特征)之间的一些条件独立性。利用该算法,我们得到了一种图形结构,使数据元素能够以一种有效的方式聚类。同时给出了一种特征空间降维的新方法。通过这种方式,在低维的情况下,集群的可视化也成为可能。这种聚类的结果也可以用于新数据元素的分类。我们展示了该方法如何处理实际问题,并将我们的结果与应用于相同数据集的其他算法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster analysis by exploiting conditional independences
In this paper we introduce an unsupervised learning algorithm for discovering some of the conditional independences between the attributes (features) which characterize the elements of a statistical population. Using this algorithm we obtain a graph structure which makes possible the clustering of data elements into classes in an efficient way. In the same time our algorithm gives a new method for reducing the dimension of the feature space. In this way also the visualization of the clusters becomes possible in lower dimensional cases. The results of this type of clustering can be used also for classification of new data elements. We show how the method works on real problems and compare our results to those of other algorithms which are applied to the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信