利用连续小波变换峰的最近邻进行心脏雷达生物特征识别

D. Rissacher, D. Galy
{"title":"利用连续小波变换峰的最近邻进行心脏雷达生物特征识别","authors":"D. Rissacher, D. Galy","doi":"10.1109/ISBA.2015.7126356","DOIUrl":null,"url":null,"abstract":"This work explores the use of cardiac data acquired by a 2.4 GHz radar system as a potential biometric identification tool. Monostatic and bistatic systems are used to record data from human subjects over two visits. Cardiac data is extracted from the radar recordings and an ensemble average is computed using ECG as a time reference. The Continuous Wavelet Transform is then computed to provide time-frequency analysis of the average radar cardiac cycle and a nearest neighbor technique is applied to demonstrate that a cardiac radar system has some promise as a biometric identification technology currently producing Rank-1 accuracy of 19% and Rank-5 accuracy of 42% over 26 subjects.","PeriodicalId":398910,"journal":{"name":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Cardiac radar for biometric identification using nearest neighbour of continuous wavelet transform peaks\",\"authors\":\"D. Rissacher, D. Galy\",\"doi\":\"10.1109/ISBA.2015.7126356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores the use of cardiac data acquired by a 2.4 GHz radar system as a potential biometric identification tool. Monostatic and bistatic systems are used to record data from human subjects over two visits. Cardiac data is extracted from the radar recordings and an ensemble average is computed using ECG as a time reference. The Continuous Wavelet Transform is then computed to provide time-frequency analysis of the average radar cardiac cycle and a nearest neighbor technique is applied to demonstrate that a cardiac radar system has some promise as a biometric identification technology currently producing Rank-1 accuracy of 19% and Rank-5 accuracy of 42% over 26 subjects.\",\"PeriodicalId\":398910,\"journal\":{\"name\":\"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2015.7126356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2015.7126356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

这项工作探讨了使用2.4 GHz雷达系统获取的心脏数据作为潜在的生物识别工具。单站和双站系统用于记录人类受试者两次访问的数据。从雷达记录中提取心脏数据,并使用ECG作为时间参考计算集合平均值。然后计算连续小波变换以提供平均雷达心脏周期的时频分析,并应用最近邻技术来证明心脏雷达系统作为一种生物识别技术具有一定的前景,目前在26个受试者中产生的Rank-1精度为19%,Rank-5精度为42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac radar for biometric identification using nearest neighbour of continuous wavelet transform peaks
This work explores the use of cardiac data acquired by a 2.4 GHz radar system as a potential biometric identification tool. Monostatic and bistatic systems are used to record data from human subjects over two visits. Cardiac data is extracted from the radar recordings and an ensemble average is computed using ECG as a time reference. The Continuous Wavelet Transform is then computed to provide time-frequency analysis of the average radar cardiac cycle and a nearest neighbor technique is applied to demonstrate that a cardiac radar system has some promise as a biometric identification technology currently producing Rank-1 accuracy of 19% and Rank-5 accuracy of 42% over 26 subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信