Clara Argerich Martín , Ruben Ibáñez Pinillo , Anais Barasinski , Francisco Chinesta
{"title":"Code2vect:一个高效的异构数据分类器和非线性回归技术","authors":"Clara Argerich Martín , Ruben Ibáñez Pinillo , Anais Barasinski , Francisco Chinesta","doi":"10.1016/j.crme.2019.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to present a new classification and regression algorithm based on Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, is the nature of the data to treat: qualitative or quantitative and continuous or discrete. Contrary to other artificial intelligence techniques based on the “Big-Data,” this new approach will enable working with a reduced amount of data, within the so-called “Smart Data” paradigm. Moreover, the main purpose of this algorithm is to enable the representation of high-dimensional data and more specifically grouping and visualizing this data according to a given target. For that purpose, the data will be projected into a vectorial space equipped with an appropriate metric, able to group data according to their affinity (with respect to a given output of interest). Furthermore, another application of this algorithm lies on its prediction capability. As it occurs with most common data-mining techniques such as regression trees, by giving an input the output will be inferred, in this case considering the nature of the data formerly described. In order to illustrate its potentialities, two different applications will be addressed, one concerning the representation of high-dimensional and categorical data and another featuring the prediction capabilities of the algorithm.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 754-761"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.002","citationCount":"19","resultStr":"{\"title\":\"Code2vect: An efficient heterogenous data classifier and nonlinear regression technique\",\"authors\":\"Clara Argerich Martín , Ruben Ibáñez Pinillo , Anais Barasinski , Francisco Chinesta\",\"doi\":\"10.1016/j.crme.2019.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to present a new classification and regression algorithm based on Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, is the nature of the data to treat: qualitative or quantitative and continuous or discrete. Contrary to other artificial intelligence techniques based on the “Big-Data,” this new approach will enable working with a reduced amount of data, within the so-called “Smart Data” paradigm. Moreover, the main purpose of this algorithm is to enable the representation of high-dimensional data and more specifically grouping and visualizing this data according to a given target. For that purpose, the data will be projected into a vectorial space equipped with an appropriate metric, able to group data according to their affinity (with respect to a given output of interest). Furthermore, another application of this algorithm lies on its prediction capability. As it occurs with most common data-mining techniques such as regression trees, by giving an input the output will be inferred, in this case considering the nature of the data formerly described. In order to illustrate its potentialities, two different applications will be addressed, one concerning the representation of high-dimensional and categorical data and another featuring the prediction capabilities of the algorithm.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 11\",\"pages\":\"Pages 754-761\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.002\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301731\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Code2vect: An efficient heterogenous data classifier and nonlinear regression technique
The aim of this paper is to present a new classification and regression algorithm based on Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, is the nature of the data to treat: qualitative or quantitative and continuous or discrete. Contrary to other artificial intelligence techniques based on the “Big-Data,” this new approach will enable working with a reduced amount of data, within the so-called “Smart Data” paradigm. Moreover, the main purpose of this algorithm is to enable the representation of high-dimensional data and more specifically grouping and visualizing this data according to a given target. For that purpose, the data will be projected into a vectorial space equipped with an appropriate metric, able to group data according to their affinity (with respect to a given output of interest). Furthermore, another application of this algorithm lies on its prediction capability. As it occurs with most common data-mining techniques such as regression trees, by giving an input the output will be inferred, in this case considering the nature of the data formerly described. In order to illustrate its potentialities, two different applications will be addressed, one concerning the representation of high-dimensional and categorical data and another featuring the prediction capabilities of the algorithm.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.