基于高阶纹理描述符的海湾龙虾换壳阶段分析

M. Asif, Yongsheng Gao, Jun Zhou
{"title":"基于高阶纹理描述符的海湾龙虾换壳阶段分析","authors":"M. Asif, Yongsheng Gao, Jun Zhou","doi":"10.1109/DICTA.2018.8615832","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the world's first method to automatically classify the moulting stage of Bay lobsters, formally known as Thenus orientális, in a controlled environment. Our classification approach only requires top view images of exoskeleton of bay lobsters. We analyzed the texture of exoskeleton to categorize into normal, moulting stage, and freshly moulted classes. To meet the efficiency and robustness requirements of production platform, we leverage traditional approach such as Local Binary Pattern and Local Derivative Pattern with enhanced encoding scheme for underwater imagery. We also build a dataset of 315 bay lobster images captured at the controlled under water environment. Experimental results on this dataset demonstrated that the proposed method can effectively classify bay lobsters with a high accuracy.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bay Lobsters Moulting Stage Analysis Based on High-Order Texture Descriptor\",\"authors\":\"M. Asif, Yongsheng Gao, Jun Zhou\",\"doi\":\"10.1109/DICTA.2018.8615832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the world's first method to automatically classify the moulting stage of Bay lobsters, formally known as Thenus orientális, in a controlled environment. Our classification approach only requires top view images of exoskeleton of bay lobsters. We analyzed the texture of exoskeleton to categorize into normal, moulting stage, and freshly moulted classes. To meet the efficiency and robustness requirements of production platform, we leverage traditional approach such as Local Binary Pattern and Local Derivative Pattern with enhanced encoding scheme for underwater imagery. We also build a dataset of 315 bay lobster images captured at the controlled under water environment. Experimental results on this dataset demonstrated that the proposed method can effectively classify bay lobsters with a high accuracy.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了世界上第一个在受控环境下自动分类海湾龙虾换羽阶段的方法,正式名称为Thenus orientális。我们的分类方法只需要海湾龙虾外骨骼的俯视图图像。我们分析了外骨骼的纹理,将其分为正常、换羽期和刚换羽期。为了满足生产平台对效率和鲁棒性的要求,我们利用传统的局部二值模式和局部导数模式对水下图像进行增强编码。我们还建立了在水下环境控制下捕获的315个海湾龙虾图像数据集。在该数据集上的实验结果表明,该方法可以有效地对海湾龙虾进行分类,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bay Lobsters Moulting Stage Analysis Based on High-Order Texture Descriptor
In this paper, we introduce the world's first method to automatically classify the moulting stage of Bay lobsters, formally known as Thenus orientális, in a controlled environment. Our classification approach only requires top view images of exoskeleton of bay lobsters. We analyzed the texture of exoskeleton to categorize into normal, moulting stage, and freshly moulted classes. To meet the efficiency and robustness requirements of production platform, we leverage traditional approach such as Local Binary Pattern and Local Derivative Pattern with enhanced encoding scheme for underwater imagery. We also build a dataset of 315 bay lobster images captured at the controlled under water environment. Experimental results on this dataset demonstrated that the proposed method can effectively classify bay lobsters with a high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信