变容倍频器匹配网络与空闲电路的优化综合

Jiadong Huang, Z. Ding
{"title":"变容倍频器匹配网络与空闲电路的优化综合","authors":"Jiadong Huang, Z. Ding","doi":"10.1109/SBMO.1993.587223","DOIUrl":null,"url":null,"abstract":"T h i s pape r d e s c r i b e s a new method t o s y n t h e s i z e a v a r a c t o r f r equency m u l t i p l i e r , w h i c h i s based on q u a s i l i n e a r a n a l y s i s of t h e m u l t i p l i e r as a whole w i t h t h e h e l p of computer o p t i m i z a t i o n , i n s t e a d of d e s i g n i n g t h e i n p u t and o u t p u t matching networks as w e l l a:; i d l e r c i r c u i t s e p a r a t e l y . The o p t i m i z a t i o n and experiment examples i n this; pape r have shown t h a t t h e approach i s v e r y e f f e c t i v e and s u c c e s s f u l . I n t r o d u c t i o n A s w e know, t h e d e s i g n of v a r a c t o r f r equency m u l t i p l i e r s i n e s s e n c e i s a network s y n t h e s i s problem,,once t h e v a r a c t o r dynamic impedance a t i n p u t , o u t p u t and i d l e r f r e q u e n c i e s have been c a l c u l a t e d i n t h e l i s t f o r m [ l ] . I n o r d e r t o e n s u r e h igh conve r s ion e f f i c i e n c y , t h e i n p u t and o u t p u t networks are conjug a t e l y matched t o t h e v a r a c t o r dynamic impedance a t i n p u t and o u t p u t f requenc i e s r e s p e c t i v e l y . Moreover,, t h e i d l e r c i r c u i t i s r e s o n a t e d a t i d l e r f requency t o a l l o w i d l e r energy t o ex t r eme ly d r i v e v a r a c t o r . Of c o u r s e , t h e above mentioned c a l c u l a t i o n s of v a r a c t o r dynamic impedance are based on t h e f o l l o w i n g assumpt i o n s , .The i n p u t and o u t p u t p o s s e s s i d e a l i s o l a t i o n . .The v a r a c t o r c u r r e n t i s c o n s t r a i n e d t o f low o n l y a t t h e i n p u t , o u t p u t and d e s i r e d i d l e frequency., A s a m a t t e r of f a c t , t h e m u l t i p l i e r f i l t e r s do n o t p o s s i b l y p r o v i d e i d e a l open o r s h o r t performances a t co r re spond ing f r e q u e n c i e s and have n o n n e g l i g i b l e rea c t a n c e . On t h e o t h e r hand, because of t h e v a r a c t o r p a r a s i t i c p a r a m e t e r s , t h e i d l e r c i r c u i t , such as a q u a r t e r wavelength open s t u b , i s n o t r e a l l y resonan t a t i d l e r frequency.As a r e s u l t , o t h e r harmonic c u r r e n t s b e s i d e s i n p u t l o u t p u t and i d l e f r equency may occur i n t h e v a r a c t o r . The i n p u t and o u t p u t c i r c u i t s w i l l i n t e r f e r e w i t h each o t h e r . For e x a m p l e , a d j u s t i n g t h e o u t p u t c i r c u i t may change i n p u t impedance of f-requency m u l t i p l i e r o r v a r a c t o r o p e r a t i n g s t a t e . Cons ide r ing t h e s e s i t u a t i o n , t h e m u l t i p l i e r d e s i g n becomes much more complicated. D e s c r i p t i o n of o p t i m i z a t i o n t e c h n i q u e The m u l t i p l i e r a n a l y s i s i s based upon ABCD pa rame te r s of t h e c i r c u i t elements. T h i s i s a s t a n d a r d network a n a l y s i s t e c h n i q u e . The advan tages of ABCD m a t r i x l ies i n t h e ease, i n which cascaded networks may b e r e p r e s e n t e d and a n a l y z e d [ 2 ] . A t y p i c a l b l o c k diagram of v a r a c t o r f r equency m u l t i p l i e r o p e r a t i n g i n shunt mode is shown in Fig.1, Where F i = I n p u t l o w pass f i l t . e r , Fo= Output band pass f i l t e r , N i = I n p u t matching network, No = Output matching network, Nm = I d l e r c i r c u i t , 6 2 9 Ls = lead inductor of varactor, Cp= Packaged capacetances of varactor, R = Ri,Rn,FUn are varactor dynamic resistances at input, output and idler C = Ci,Cn,Cm are varactor dynamic capacitances at input, output and idler Zr = Input impedance of cascaded networks by No and Fo, Z1 = Output impedance of cascaded networks by Fi, Ni, Nm and Cp, Zin = Total input impedance at input frequency f, Zout = Total output impedance at output frequency Nf, Zpp‘ = Equivalent impedance of overall network except for L s , R and C, X = Total reactance of varactor internal loop, which is shown in Fig.2 frequency f , Nf and Mf respictively, frequency f, Nf and Mf respictively, It is obvious that X can be calculated by, 1 X(r’)=2nFLs ~ + Im(Zpp‘) Where Im(2pp’) is reactance of Zpp’ Generally speaking, the requirements for frequency multiplier synthesis 2 nFC can be summarized as follows, (1)Perfect input and output impedance matching, Zin(f)=Rg at input frequency f, Zout(Nf)=RL at output frequency Nf, (2)Good isolation between input and output, 1 1 =O at input frequency f , = O at output frequency Nf , I W f ) I IZ1(Nf) 1 (3)Full resonance of idler circuit, X(Mf)=O at idler frequency Mf, (4)Effective suppression of undesired harmonics. 1 =O at undesired harmonic frequency Kf I X W ) 1 At this point, the optimization synthesis of the frequency multiplier can be formulated as the minimization of a objective function, which is written as F(X1 , X2 , .. . . . . , XJ )=W11 Zin( f) -Rgl +W2 1 Zout (Nf) -RLI +W3 I X(Mf) I 1 1 WP + w4 + w5 + c I Zr(f1 I I Z1(Nf) I IX(Kf) I where F(Xl,X2, ......, Xj) is the objective function, Xl,X2, ......, Xj are element values of the input, output matching networks Ni, No and idler circuit Nm (characteristic impedance or electrical length zl, ....,Lj),which are determined by minimizing the above objective function. Wl,W2, ... Wp are weighting coefficients, which are able to adjust according the relative emphasis on some terms. The constrained element limits are chosen as For electrical length L 10","PeriodicalId":219944,"journal":{"name":"SBMO International Microwave Conference/Brazil,","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Optimization Synthesis Of Matching Network And Idler Circuit For Varactor Frequency Multipliers\",\"authors\":\"Jiadong Huang, Z. Ding\",\"doi\":\"10.1109/SBMO.1993.587223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"T h i s pape r d e s c r i b e s a new method t o s y n t h e s i z e a v a r a c t o r f r equency m u l t i p l i e r , w h i c h i s based on q u a s i l i n e a r a n a l y s i s of t h e m u l t i p l i e r as a whole w i t h t h e h e l p of computer o p t i m i z a t i o n , i n s t e a d of d e s i g n i n g t h e i n p u t and o u t p u t matching networks as w e l l a:; i d l e r c i r c u i t s e p a r a t e l y . The o p t i m i z a t i o n and experiment examples i n this; pape r have shown t h a t t h e approach i s v e r y e f f e c t i v e and s u c c e s s f u l . I n t r o d u c t i o n A s w e know, t h e d e s i g n of v a r a c t o r f r equency m u l t i p l i e r s i n e s s e n c e i s a network s y n t h e s i s problem,,once t h e v a r a c t o r dynamic impedance a t i n p u t , o u t p u t and i d l e r f r e q u e n c i e s have been c a l c u l a t e d i n t h e l i s t f o r m [ l ] . I n o r d e r t o e n s u r e h igh conve r s ion e f f i c i e n c y , t h e i n p u t and o u t p u t networks are conjug a t e l y matched t o t h e v a r a c t o r dynamic impedance a t i n p u t and o u t p u t f requenc i e s r e s p e c t i v e l y . Moreover,, t h e i d l e r c i r c u i t i s r e s o n a t e d a t i d l e r f requency t o a l l o w i d l e r energy t o ex t r eme ly d r i v e v a r a c t o r . Of c o u r s e , t h e above mentioned c a l c u l a t i o n s of v a r a c t o r dynamic impedance are based on t h e f o l l o w i n g assumpt i o n s , .The i n p u t and o u t p u t p o s s e s s i d e a l i s o l a t i o n . .The v a r a c t o r c u r r e n t i s c o n s t r a i n e d t o f low o n l y a t t h e i n p u t , o u t p u t and d e s i r e d i d l e frequency., A s a m a t t e r of f a c t , t h e m u l t i p l i e r f i l t e r s do n o t p o s s i b l y p r o v i d e i d e a l open o r s h o r t performances a t co r re spond ing f r e q u e n c i e s and have n o n n e g l i g i b l e rea c t a n c e . On t h e o t h e r hand, because of t h e v a r a c t o r p a r a s i t i c p a r a m e t e r s , t h e i d l e r c i r c u i t , such as a q u a r t e r wavelength open s t u b , i s n o t r e a l l y resonan t a t i d l e r frequency.As a r e s u l t , o t h e r harmonic c u r r e n t s b e s i d e s i n p u t l o u t p u t and i d l e f r equency may occur i n t h e v a r a c t o r . The i n p u t and o u t p u t c i r c u i t s w i l l i n t e r f e r e w i t h each o t h e r . For e x a m p l e , a d j u s t i n g t h e o u t p u t c i r c u i t may change i n p u t impedance of f-requency m u l t i p l i e r o r v a r a c t o r o p e r a t i n g s t a t e . Cons ide r ing t h e s e s i t u a t i o n , t h e m u l t i p l i e r d e s i g n becomes much more complicated. D e s c r i p t i o n of o p t i m i z a t i o n t e c h n i q u e The m u l t i p l i e r a n a l y s i s i s based upon ABCD pa rame te r s of t h e c i r c u i t elements. T h i s i s a s t a n d a r d network a n a l y s i s t e c h n i q u e . The advan tages of ABCD m a t r i x l ies i n t h e ease, i n which cascaded networks may b e r e p r e s e n t e d and a n a l y z e d [ 2 ] . A t y p i c a l b l o c k diagram of v a r a c t o r f r equency m u l t i p l i e r o p e r a t i n g i n shunt mode is shown in Fig.1, Where F i = I n p u t l o w pass f i l t . e r , Fo= Output band pass f i l t e r , N i = I n p u t matching network, No = Output matching network, Nm = I d l e r c i r c u i t , 6 2 9 Ls = lead inductor of varactor, Cp= Packaged capacetances of varactor, R = Ri,Rn,FUn are varactor dynamic resistances at input, output and idler C = Ci,Cn,Cm are varactor dynamic capacitances at input, output and idler Zr = Input impedance of cascaded networks by No and Fo, Z1 = Output impedance of cascaded networks by Fi, Ni, Nm and Cp, Zin = Total input impedance at input frequency f, Zout = Total output impedance at output frequency Nf, Zpp‘ = Equivalent impedance of overall network except for L s , R and C, X = Total reactance of varactor internal loop, which is shown in Fig.2 frequency f , Nf and Mf respictively, frequency f, Nf and Mf respictively, It is obvious that X can be calculated by, 1 X(r’)=2nFLs ~ + Im(Zpp‘) Where Im(2pp’) is reactance of Zpp’ Generally speaking, the requirements for frequency multiplier synthesis 2 nFC can be summarized as follows, (1)Perfect input and output impedance matching, Zin(f)=Rg at input frequency f, Zout(Nf)=RL at output frequency Nf, (2)Good isolation between input and output, 1 1 =O at input frequency f , = O at output frequency Nf , I W f ) I IZ1(Nf) 1 (3)Full resonance of idler circuit, X(Mf)=O at idler frequency Mf, (4)Effective suppression of undesired harmonics. 1 =O at undesired harmonic frequency Kf I X W ) 1 At this point, the optimization synthesis of the frequency multiplier can be formulated as the minimization of a objective function, which is written as F(X1 , X2 , .. . . . . , XJ )=W11 Zin( f) -Rgl +W2 1 Zout (Nf) -RLI +W3 I X(Mf) I 1 1 WP + w4 + w5 + c I Zr(f1 I I Z1(Nf) I IX(Kf) I where F(Xl,X2, ......, Xj) is the objective function, Xl,X2, ......, Xj are element values of the input, output matching networks Ni, No and idler circuit Nm (characteristic impedance or electrical length zl, ....,Lj),which are determined by minimizing the above objective function. Wl,W2, ... Wp are weighting coefficients, which are able to adjust according the relative emphasis on some terms. The constrained element limits are chosen as For electrical length L 10\",\"PeriodicalId\":219944,\"journal\":{\"name\":\"SBMO International Microwave Conference/Brazil,\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SBMO International Microwave Conference/Brazil,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMO.1993.587223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SBMO International Microwave Conference/Brazil,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMO.1993.587223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

, XJ)=W11 Zin(f) -Rgl + w21 Zout (Nf) -RLI +W3 IX(Mf) i11 WP + w4 + w5 + c I Zr(f1 I Z1(Nf) iix (Kf) I其中f (Xl,X2, ......, Xj)为目标函数,Xl,X2, ......, Xj为输入、输出匹配网络Ni、No和空闲电路Nm(特性阻抗或电长度zl、....、Lj)的元件值,通过最小化上述目标函数确定。西城W2,…Wp是加权系数,可以根据某些项的相对重点进行调整。对于电气长度l10,约束元件的限值选择为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimization Synthesis Of Matching Network And Idler Circuit For Varactor Frequency Multipliers
T h i s pape r d e s c r i b e s a new method t o s y n t h e s i z e a v a r a c t o r f r equency m u l t i p l i e r , w h i c h i s based on q u a s i l i n e a r a n a l y s i s of t h e m u l t i p l i e r as a whole w i t h t h e h e l p of computer o p t i m i z a t i o n , i n s t e a d of d e s i g n i n g t h e i n p u t and o u t p u t matching networks as w e l l a:; i d l e r c i r c u i t s e p a r a t e l y . The o p t i m i z a t i o n and experiment examples i n this; pape r have shown t h a t t h e approach i s v e r y e f f e c t i v e and s u c c e s s f u l . I n t r o d u c t i o n A s w e know, t h e d e s i g n of v a r a c t o r f r equency m u l t i p l i e r s i n e s s e n c e i s a network s y n t h e s i s problem,,once t h e v a r a c t o r dynamic impedance a t i n p u t , o u t p u t and i d l e r f r e q u e n c i e s have been c a l c u l a t e d i n t h e l i s t f o r m [ l ] . I n o r d e r t o e n s u r e h igh conve r s ion e f f i c i e n c y , t h e i n p u t and o u t p u t networks are conjug a t e l y matched t o t h e v a r a c t o r dynamic impedance a t i n p u t and o u t p u t f requenc i e s r e s p e c t i v e l y . Moreover,, t h e i d l e r c i r c u i t i s r e s o n a t e d a t i d l e r f requency t o a l l o w i d l e r energy t o ex t r eme ly d r i v e v a r a c t o r . Of c o u r s e , t h e above mentioned c a l c u l a t i o n s of v a r a c t o r dynamic impedance are based on t h e f o l l o w i n g assumpt i o n s , .The i n p u t and o u t p u t p o s s e s s i d e a l i s o l a t i o n . .The v a r a c t o r c u r r e n t i s c o n s t r a i n e d t o f low o n l y a t t h e i n p u t , o u t p u t and d e s i r e d i d l e frequency., A s a m a t t e r of f a c t , t h e m u l t i p l i e r f i l t e r s do n o t p o s s i b l y p r o v i d e i d e a l open o r s h o r t performances a t co r re spond ing f r e q u e n c i e s and have n o n n e g l i g i b l e rea c t a n c e . On t h e o t h e r hand, because of t h e v a r a c t o r p a r a s i t i c p a r a m e t e r s , t h e i d l e r c i r c u i t , such as a q u a r t e r wavelength open s t u b , i s n o t r e a l l y resonan t a t i d l e r frequency.As a r e s u l t , o t h e r harmonic c u r r e n t s b e s i d e s i n p u t l o u t p u t and i d l e f r equency may occur i n t h e v a r a c t o r . The i n p u t and o u t p u t c i r c u i t s w i l l i n t e r f e r e w i t h each o t h e r . For e x a m p l e , a d j u s t i n g t h e o u t p u t c i r c u i t may change i n p u t impedance of f-requency m u l t i p l i e r o r v a r a c t o r o p e r a t i n g s t a t e . Cons ide r ing t h e s e s i t u a t i o n , t h e m u l t i p l i e r d e s i g n becomes much more complicated. D e s c r i p t i o n of o p t i m i z a t i o n t e c h n i q u e The m u l t i p l i e r a n a l y s i s i s based upon ABCD pa rame te r s of t h e c i r c u i t elements. T h i s i s a s t a n d a r d network a n a l y s i s t e c h n i q u e . The advan tages of ABCD m a t r i x l ies i n t h e ease, i n which cascaded networks may b e r e p r e s e n t e d and a n a l y z e d [ 2 ] . A t y p i c a l b l o c k diagram of v a r a c t o r f r equency m u l t i p l i e r o p e r a t i n g i n shunt mode is shown in Fig.1, Where F i = I n p u t l o w pass f i l t . e r , Fo= Output band pass f i l t e r , N i = I n p u t matching network, No = Output matching network, Nm = I d l e r c i r c u i t , 6 2 9 Ls = lead inductor of varactor, Cp= Packaged capacetances of varactor, R = Ri,Rn,FUn are varactor dynamic resistances at input, output and idler C = Ci,Cn,Cm are varactor dynamic capacitances at input, output and idler Zr = Input impedance of cascaded networks by No and Fo, Z1 = Output impedance of cascaded networks by Fi, Ni, Nm and Cp, Zin = Total input impedance at input frequency f, Zout = Total output impedance at output frequency Nf, Zpp‘ = Equivalent impedance of overall network except for L s , R and C, X = Total reactance of varactor internal loop, which is shown in Fig.2 frequency f , Nf and Mf respictively, frequency f, Nf and Mf respictively, It is obvious that X can be calculated by, 1 X(r’)=2nFLs ~ + Im(Zpp‘) Where Im(2pp’) is reactance of Zpp’ Generally speaking, the requirements for frequency multiplier synthesis 2 nFC can be summarized as follows, (1)Perfect input and output impedance matching, Zin(f)=Rg at input frequency f, Zout(Nf)=RL at output frequency Nf, (2)Good isolation between input and output, 1 1 =O at input frequency f , = O at output frequency Nf , I W f ) I IZ1(Nf) 1 (3)Full resonance of idler circuit, X(Mf)=O at idler frequency Mf, (4)Effective suppression of undesired harmonics. 1 =O at undesired harmonic frequency Kf I X W ) 1 At this point, the optimization synthesis of the frequency multiplier can be formulated as the minimization of a objective function, which is written as F(X1 , X2 , .. . . . . , XJ )=W11 Zin( f) -Rgl +W2 1 Zout (Nf) -RLI +W3 I X(Mf) I 1 1 WP + w4 + w5 + c I Zr(f1 I I Z1(Nf) I IX(Kf) I where F(Xl,X2, ......, Xj) is the objective function, Xl,X2, ......, Xj are element values of the input, output matching networks Ni, No and idler circuit Nm (characteristic impedance or electrical length zl, ....,Lj),which are determined by minimizing the above objective function. Wl,W2, ... Wp are weighting coefficients, which are able to adjust according the relative emphasis on some terms. The constrained element limits are chosen as For electrical length L 10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信