生物灵感随机投影稳健,稀疏分类

B. Davies, Nina Dekoninck Bruhin
{"title":"生物灵感随机投影稳健,稀疏分类","authors":"B. Davies, Nina Dekoninck Bruhin","doi":"10.48550/arXiv.2206.09222","DOIUrl":null,"url":null,"abstract":"Inspired by the use of random projections in biological sensing systems, we present a new algorithm for processing data in classification problems. This is based on observations of the human brain and the fruit fly's olfactory system and involves randomly projecting data into a space of greatly increased dimension before applying a cap operation to truncate the smaller entries. This leads to a simple algorithm that is very computationally efficient and can be used to either give a sparse representation with minimal loss in classification accuracy or give improved robustness, in the sense that classification accuracy is improved when noise is added to the data. This is demonstrated with numerical experiments, which supplement theoretical results demonstrating that the resulting signal transform is continuous and invertible, in an appropriate sense.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired random projections for robust, sparse classification\",\"authors\":\"B. Davies, Nina Dekoninck Bruhin\",\"doi\":\"10.48550/arXiv.2206.09222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the use of random projections in biological sensing systems, we present a new algorithm for processing data in classification problems. This is based on observations of the human brain and the fruit fly's olfactory system and involves randomly projecting data into a space of greatly increased dimension before applying a cap operation to truncate the smaller entries. This leads to a simple algorithm that is very computationally efficient and can be used to either give a sparse representation with minimal loss in classification accuracy or give improved robustness, in the sense that classification accuracy is improved when noise is added to the data. This is demonstrated with numerical experiments, which supplement theoretical results demonstrating that the resulting signal transform is continuous and invertible, in an appropriate sense.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.09222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.09222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受随机投影在生物传感系统中的应用启发,我们提出了一种新的分类问题数据处理算法。这是基于对人类大脑和果蝇嗅觉系统的观察,包括在应用帽操作截断较小条目之前,将数据随机投射到一个大大增加维度的空间中。这就产生了一种计算效率很高的简单算法,它既可以在分类精度损失最小的情况下给出稀疏表示,也可以在向数据中添加噪声时提高分类精度,从而提高鲁棒性。数值实验证明了这一点,并补充了理论结果,表明所得到的信号变换在适当意义上是连续和可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired random projections for robust, sparse classification
Inspired by the use of random projections in biological sensing systems, we present a new algorithm for processing data in classification problems. This is based on observations of the human brain and the fruit fly's olfactory system and involves randomly projecting data into a space of greatly increased dimension before applying a cap operation to truncate the smaller entries. This leads to a simple algorithm that is very computationally efficient and can be used to either give a sparse representation with minimal loss in classification accuracy or give improved robustness, in the sense that classification accuracy is improved when noise is added to the data. This is demonstrated with numerical experiments, which supplement theoretical results demonstrating that the resulting signal transform is continuous and invertible, in an appropriate sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信