从数字视频中快速提取视觉显著性图

Shilin Xu, Weisi Lin, C.-C. Jay Kuo
{"title":"从数字视频中快速提取视觉显著性图","authors":"Shilin Xu, Weisi Lin, C.-C. Jay Kuo","doi":"10.1109/ICCE.2009.5012298","DOIUrl":null,"url":null,"abstract":"A fast algorithm to extract the visual saliency map from digital video is proposed in this research. Since digital video is stored and/or transmitted in coded form, we utilize the motion vector field (MVF) for foreground/background separation and apply an image based contrast model for further performance improvement. The performance of the proposed algorithm is demonstrated by experimental results.","PeriodicalId":154986,"journal":{"name":"2009 Digest of Technical Papers International Conference on Consumer Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast visual saliency map extraction from digital video\",\"authors\":\"Shilin Xu, Weisi Lin, C.-C. Jay Kuo\",\"doi\":\"10.1109/ICCE.2009.5012298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast algorithm to extract the visual saliency map from digital video is proposed in this research. Since digital video is stored and/or transmitted in coded form, we utilize the motion vector field (MVF) for foreground/background separation and apply an image based contrast model for further performance improvement. The performance of the proposed algorithm is demonstrated by experimental results.\",\"PeriodicalId\":154986,\"journal\":{\"name\":\"2009 Digest of Technical Papers International Conference on Consumer Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digest of Technical Papers International Conference on Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2009.5012298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digest of Technical Papers International Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2009.5012298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种从数字视频中提取视觉显著性图的快速算法。由于数字视频以编码形式存储和/或传输,我们利用运动矢量场(MVF)进行前景/背景分离,并应用基于图像的对比度模型进一步提高性能。实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast visual saliency map extraction from digital video
A fast algorithm to extract the visual saliency map from digital video is proposed in this research. Since digital video is stored and/or transmitted in coded form, we utilize the motion vector field (MVF) for foreground/background separation and apply an image based contrast model for further performance improvement. The performance of the proposed algorithm is demonstrated by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信