{"title":"大规模图像检索的无监督秩保持哈希","authors":"Svebor Karaman, Xudong Lin, Xuefeng Hu, Shih-Fu Chang","doi":"10.1145/3323873.3325038","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised hashing method, exploiting a shallow neural network, that aims to produce binary codes that preserve the ranking induced by an original real-valued representation. This is motivated by the emergence of small-world graph-based approximate search methods that rely on local neighborhood ranking. We formalize the training process in an intuitive way by considering each training sample as a query and aiming to obtain a ranking of a random subset of the training set using the hash codes that is the same as the ranking using the original features. We also explore the use of a decoder to obtain an approximated reconstruction of the original features. At test time, we retrieve the most promising database samples using only the hash codes and perform re-ranking using the reconstructed features, thus allowing the complete elimination of the original real-valued features and the associated high memory cost. Experiments conducted on publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unsupervised Rank-Preserving Hashing for Large-Scale Image Retrieval\",\"authors\":\"Svebor Karaman, Xudong Lin, Xuefeng Hu, Shih-Fu Chang\",\"doi\":\"10.1145/3323873.3325038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an unsupervised hashing method, exploiting a shallow neural network, that aims to produce binary codes that preserve the ranking induced by an original real-valued representation. This is motivated by the emergence of small-world graph-based approximate search methods that rely on local neighborhood ranking. We formalize the training process in an intuitive way by considering each training sample as a query and aiming to obtain a ranking of a random subset of the training set using the hash codes that is the same as the ranking using the original features. We also explore the use of a decoder to obtain an approximated reconstruction of the original features. At test time, we retrieve the most promising database samples using only the hash codes and perform re-ranking using the reconstructed features, thus allowing the complete elimination of the original real-valued features and the associated high memory cost. Experiments conducted on publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.\",\"PeriodicalId\":149041,\"journal\":{\"name\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323873.3325038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Rank-Preserving Hashing for Large-Scale Image Retrieval
We propose an unsupervised hashing method, exploiting a shallow neural network, that aims to produce binary codes that preserve the ranking induced by an original real-valued representation. This is motivated by the emergence of small-world graph-based approximate search methods that rely on local neighborhood ranking. We formalize the training process in an intuitive way by considering each training sample as a query and aiming to obtain a ranking of a random subset of the training set using the hash codes that is the same as the ranking using the original features. We also explore the use of a decoder to obtain an approximated reconstruction of the original features. At test time, we retrieve the most promising database samples using only the hash codes and perform re-ranking using the reconstructed features, thus allowing the complete elimination of the original real-valued features and the associated high memory cost. Experiments conducted on publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.