{"title":"一种基于改进的自适应权值调整进化多目标优化算法","authors":"Cai Dai, Xiu-juan Lei","doi":"10.1109/CIS.2017.00019","DOIUrl":null,"url":null,"abstract":"For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improvement Based Evolutionary Algorithm with Adaptive Weight Adjustment for Many-Objective Optimization\",\"authors\":\"Cai Dai, Xiu-juan Lei\",\"doi\":\"10.1109/CIS.2017.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improvement Based Evolutionary Algorithm with Adaptive Weight Adjustment for Many-Objective Optimization
For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.