一种基于改进的自适应权值调整进化多目标优化算法

Cai Dai, Xiu-juan Lei
{"title":"一种基于改进的自适应权值调整进化多目标优化算法","authors":"Cai Dai, Xiu-juan Lei","doi":"10.1109/CIS.2017.00019","DOIUrl":null,"url":null,"abstract":"For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improvement Based Evolutionary Algorithm with Adaptive Weight Adjustment for Many-Objective Optimization\",\"authors\":\"Cai Dai, Xiu-juan Lei\",\"doi\":\"10.1109/CIS.2017.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于多目标优化问题(MaOPs),如何获得一组具有良好收敛性和多样性的解是一项困难而富有挑战性的工作。为了实现这一目标,本文设计了一种新的基于分解的自适应权值调整进化算法。首先,设计了一种基于均匀设计和拥挤距离的新方法,生成一组均匀性好的权重向量;其次,采用自适应权值调整方法求解具有复杂Pareto最优前(即具有低尾尖峰的PF或不连续PF)的MaOPs;第三,使用选择策略帮助每个子目标空间获得非支配解(如果有)。在一些基准函数上,与目前一些高效的算法(如MOEA/D和HypE)相比,本文算法能够找到一组具有更好的多样性和收敛性的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improvement Based Evolutionary Algorithm with Adaptive Weight Adjustment for Many-Objective Optimization
For many-objective optimization problems (MaOPs), how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition-based evolutionary algorithm with adaptive weight adjustment is designed to obtain this goal. Firstly, a new method based on uniform design and crowding distance is designed to generate a set of weight vectors with good uniformly. Secondly, an adaptive weight adjustment is used to solve some MaOPs with complex Pareto optimal front (PF) (i.e. PF with a sharp peak of low tail or discontinuous PF). Thirdly, a selection strategy is used to help each sub-objective space to obtain a non-dominated solution (if have). Comparing with some efficient state-of-the-art algorithms, e.g., MOEA/D and HypE on some benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信