微生物技术:迈向再生建筑

Rachel Armstrong
{"title":"微生物技术:迈向再生建筑","authors":"Rachel Armstrong","doi":"10.36922/jcau.157","DOIUrl":null,"url":null,"abstract":"This paper examines the applications of microbial technologies in regenerative architecture, which enliven the built environment and its territories by establishing a different relationship between waste, energy, human inhabitation, and microbial “life.” The specific platform discussed is centered on the microbial fuel cell (an ecologically “just” platform that provides bioelectrical energy, data, and chemical transformation from human waste streams), which are exemplified by a range of demonstrators that establish transactional systems between humans and microbes. These simultaneously “sustainable” and “smart” demonstrators establish operational principles for the wider deployment and uptake of microbial technologies in an urban context. The city-scale implementations of these regenerative systems have the potential to establish the foundations for “living cities,” which are fundamentally bioremediating, resulting in an overall increase in liveliness of our habitats and living spaces.","PeriodicalId":429385,"journal":{"name":"Journal of Chinese Architecture and Urbanism","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial technologies: Toward a regenerative architecture\",\"authors\":\"Rachel Armstrong\",\"doi\":\"10.36922/jcau.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the applications of microbial technologies in regenerative architecture, which enliven the built environment and its territories by establishing a different relationship between waste, energy, human inhabitation, and microbial “life.” The specific platform discussed is centered on the microbial fuel cell (an ecologically “just” platform that provides bioelectrical energy, data, and chemical transformation from human waste streams), which are exemplified by a range of demonstrators that establish transactional systems between humans and microbes. These simultaneously “sustainable” and “smart” demonstrators establish operational principles for the wider deployment and uptake of microbial technologies in an urban context. The city-scale implementations of these regenerative systems have the potential to establish the foundations for “living cities,” which are fundamentally bioremediating, resulting in an overall increase in liveliness of our habitats and living spaces.\",\"PeriodicalId\":429385,\"journal\":{\"name\":\"Journal of Chinese Architecture and Urbanism\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chinese Architecture and Urbanism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/jcau.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chinese Architecture and Urbanism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/jcau.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了微生物技术在再生建筑中的应用,通过在废物、能源、人类居住和微生物“生命”之间建立一种不同的关系,使建筑环境及其领土活跃起来。所讨论的具体平台以微生物燃料电池为中心(一种生态“公正”的平台,提供生物电能、数据和从人类废物流中进行化学转化),通过一系列建立人类和微生物之间交易系统的演示来举例说明。这些同时具有“可持续”和“智能”的示范项目为在城市环境中更广泛地部署和采用微生物技术确立了操作原则。这些再生系统在城市规模上的实施有可能为“生活城市”奠定基础,从根本上进行生物修复,从而使我们的栖息地和生活空间的活力得到全面提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial technologies: Toward a regenerative architecture
This paper examines the applications of microbial technologies in regenerative architecture, which enliven the built environment and its territories by establishing a different relationship between waste, energy, human inhabitation, and microbial “life.” The specific platform discussed is centered on the microbial fuel cell (an ecologically “just” platform that provides bioelectrical energy, data, and chemical transformation from human waste streams), which are exemplified by a range of demonstrators that establish transactional systems between humans and microbes. These simultaneously “sustainable” and “smart” demonstrators establish operational principles for the wider deployment and uptake of microbial technologies in an urban context. The city-scale implementations of these regenerative systems have the potential to establish the foundations for “living cities,” which are fundamentally bioremediating, resulting in an overall increase in liveliness of our habitats and living spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信