使用屏幕空间算子的大规模非结构化原始点云的实时渲染

R. Pintus, E. Gobbetti, Marco Agus
{"title":"使用屏幕空间算子的大规模非结构化原始点云的实时渲染","authors":"R. Pintus, E. Gobbetti, Marco Agus","doi":"10.2312/VAST/VAST11/105-112","DOIUrl":null,"url":null,"abstract":"Nowadays, 3D acquisition devices allow us to capture the geometry of huge Cultural Heritage (CH) sites, historical buildings and urban environments. We present a scalable real-time method to render this kind of models without requiring lengthy preprocessing. The method does not make any assumptions about sampling density or availability of normal vectors for the points. On a frame-by-frame basis, our GPU accelerated renderer computes point cloud visibility, fills and filters the sparse depth map to generate a continuous surface representation of the point cloud, and provides a screen-space shading term to effectively convey shape features. The technique is applicable to all rendering pipelines capable of projecting points to the frame buffer. To deal with extremely massive models, we integrate it within a multi-resolution out-of-core real-time rendering framework with small pre-computation times. Its effectiveness is demonstrated on a series of massive unstructured real-world Cultural Heritage datasets. The small precomputation times and the low memory requirements make the method suitable for quick onsite visualizations during scan campaigns.","PeriodicalId":168094,"journal":{"name":"IEEE Conference on Visual Analytics Science and Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators\",\"authors\":\"R. Pintus, E. Gobbetti, Marco Agus\",\"doi\":\"10.2312/VAST/VAST11/105-112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, 3D acquisition devices allow us to capture the geometry of huge Cultural Heritage (CH) sites, historical buildings and urban environments. We present a scalable real-time method to render this kind of models without requiring lengthy preprocessing. The method does not make any assumptions about sampling density or availability of normal vectors for the points. On a frame-by-frame basis, our GPU accelerated renderer computes point cloud visibility, fills and filters the sparse depth map to generate a continuous surface representation of the point cloud, and provides a screen-space shading term to effectively convey shape features. The technique is applicable to all rendering pipelines capable of projecting points to the frame buffer. To deal with extremely massive models, we integrate it within a multi-resolution out-of-core real-time rendering framework with small pre-computation times. Its effectiveness is demonstrated on a series of massive unstructured real-world Cultural Heritage datasets. The small precomputation times and the low memory requirements make the method suitable for quick onsite visualizations during scan campaigns.\",\"PeriodicalId\":168094,\"journal\":{\"name\":\"IEEE Conference on Visual Analytics Science and Technology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VAST/VAST11/105-112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VAST/VAST11/105-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

如今,3D采集设备使我们能够捕捉到巨大的文化遗产(CH)遗址、历史建筑和城市环境的几何形状。我们提出了一种可扩展的实时方法来渲染这类模型,而不需要进行冗长的预处理。该方法没有对采样密度或点的法向量可用性做任何假设。在逐帧的基础上,我们的GPU加速渲染器计算点云可见性,填充和过滤稀疏深度图以生成点云的连续表面表示,并提供屏幕空间着色术语以有效地传达形状特征。该技术适用于所有能够将点投射到帧缓冲区的渲染管道。为了处理海量模型,我们将其集成到一个多分辨率的核外实时渲染框架中,并且预计算时间短。它的有效性在一系列大规模非结构化的真实世界文化遗产数据集上得到了证明。较小的预计算时间和较低的内存要求使该方法适合于扫描活动期间的快速现场可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators
Nowadays, 3D acquisition devices allow us to capture the geometry of huge Cultural Heritage (CH) sites, historical buildings and urban environments. We present a scalable real-time method to render this kind of models without requiring lengthy preprocessing. The method does not make any assumptions about sampling density or availability of normal vectors for the points. On a frame-by-frame basis, our GPU accelerated renderer computes point cloud visibility, fills and filters the sparse depth map to generate a continuous surface representation of the point cloud, and provides a screen-space shading term to effectively convey shape features. The technique is applicable to all rendering pipelines capable of projecting points to the frame buffer. To deal with extremely massive models, we integrate it within a multi-resolution out-of-core real-time rendering framework with small pre-computation times. Its effectiveness is demonstrated on a series of massive unstructured real-world Cultural Heritage datasets. The small precomputation times and the low memory requirements make the method suitable for quick onsite visualizations during scan campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信