{"title":"袋鼠型跳跃机器人的设计与优化","authors":"B. Liu, W. Ge, Yuzhu Li, Dianbiao Dong","doi":"10.1109/WCMEIM56910.2022.10021552","DOIUrl":null,"url":null,"abstract":"Bionic jumping robots have been widely used due to their high mobility and wide range of terrain adaptation. Jumping robots in the existing research suffer from complex mechanical mechanisms and unstable aerial postures, which cause the jumping robot to collide with the ground when landing. This paper proposes the design of a new jumping robot with a large jump stroke based on a simple geared five-bar mechanism. Based on characteristics of the applied mechanism, the proposed jumping robot can realize the adjustment of aerial posture independently. Firstly, a mechanical configuration of the new jumping robot is proposed, and its kinematics and dynamics are given. Then, dimensional parameters of the proposed jumping robot are optimized based on the genetic algorithm. Finally, an experimental prototype is designed to verify the actual performance of the proposed robot. Experimental results show that the proposed jumping robot has a large jumping stroke and stable jumping posture.","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of a Kangaroo-inspired Jumping Robot\",\"authors\":\"B. Liu, W. Ge, Yuzhu Li, Dianbiao Dong\",\"doi\":\"10.1109/WCMEIM56910.2022.10021552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bionic jumping robots have been widely used due to their high mobility and wide range of terrain adaptation. Jumping robots in the existing research suffer from complex mechanical mechanisms and unstable aerial postures, which cause the jumping robot to collide with the ground when landing. This paper proposes the design of a new jumping robot with a large jump stroke based on a simple geared five-bar mechanism. Based on characteristics of the applied mechanism, the proposed jumping robot can realize the adjustment of aerial posture independently. Firstly, a mechanical configuration of the new jumping robot is proposed, and its kinematics and dynamics are given. Then, dimensional parameters of the proposed jumping robot are optimized based on the genetic algorithm. Finally, an experimental prototype is designed to verify the actual performance of the proposed robot. Experimental results show that the proposed jumping robot has a large jumping stroke and stable jumping posture.\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Optimization of a Kangaroo-inspired Jumping Robot
Bionic jumping robots have been widely used due to their high mobility and wide range of terrain adaptation. Jumping robots in the existing research suffer from complex mechanical mechanisms and unstable aerial postures, which cause the jumping robot to collide with the ground when landing. This paper proposes the design of a new jumping robot with a large jump stroke based on a simple geared five-bar mechanism. Based on characteristics of the applied mechanism, the proposed jumping robot can realize the adjustment of aerial posture independently. Firstly, a mechanical configuration of the new jumping robot is proposed, and its kinematics and dynamics are given. Then, dimensional parameters of the proposed jumping robot are optimized based on the genetic algorithm. Finally, an experimental prototype is designed to verify the actual performance of the proposed robot. Experimental results show that the proposed jumping robot has a large jumping stroke and stable jumping posture.