{"title":"新的奇数Lindley-G幂级数类分布:理论、性质及应用","authors":"Fastel Chipepa, B. Oluyede, B. Makubate","doi":"10.16929/as/2021.2819.186","DOIUrl":null,"url":null,"abstract":"We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The New Odd Lindley-G Power Series Class of Distributions: Theory, Properties and Applications\",\"authors\":\"Fastel Chipepa, B. Oluyede, B. Makubate\",\"doi\":\"10.16929/as/2021.2819.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2021.2819.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2021.2819.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The New Odd Lindley-G Power Series Class of Distributions: Theory, Properties and Applications
We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model