NOMA-Uplink协议下智能数据压缩的深度强化学习算法

Mohamed Elsayed, A. Badawy, A. Shafie, Amr M. Mohamed, T. Khattab
{"title":"NOMA-Uplink协议下智能数据压缩的深度强化学习算法","authors":"Mohamed Elsayed, A. Badawy, A. Shafie, Amr M. Mohamed, T. Khattab","doi":"10.1109/CCECE47787.2020.9255757","DOIUrl":null,"url":null,"abstract":"One of the highly promising radio access strategies for enhancing performance in the next generation cellular communications is non-orthogonal multiple access (NOMA). NOMA offers a number of advantages including better spectrum efficiency. This paper focuses primarily on proposing an energy efficient system for transmitting medical data, such as electroencephalogram (EEG), collected from patients for the sake of continuous monitoring. The framework proposes the use of deep reinforcement learning (DRL) to provide smart data compression in uplink-NOMA protocol. DRL enforces the data compression ratios for the nodes in order to avoid outage constraints at any sensor node. Jointly, it optimizes the power consumption of these sensor nodes. The data compression for such sensor network is vital in order to minimize the power every sensor consumes to maximize its service lifetime. We minimize the expected distortion under practical channel realization and outage probability constraints using NOMA-uplink protocol. Meanwhile, we optimize the power efficiency of the user node in order to increase the battery lifetime.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning Algorithm for Smart Data Compression under NOMA-Uplink Protocol\",\"authors\":\"Mohamed Elsayed, A. Badawy, A. Shafie, Amr M. Mohamed, T. Khattab\",\"doi\":\"10.1109/CCECE47787.2020.9255757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the highly promising radio access strategies for enhancing performance in the next generation cellular communications is non-orthogonal multiple access (NOMA). NOMA offers a number of advantages including better spectrum efficiency. This paper focuses primarily on proposing an energy efficient system for transmitting medical data, such as electroencephalogram (EEG), collected from patients for the sake of continuous monitoring. The framework proposes the use of deep reinforcement learning (DRL) to provide smart data compression in uplink-NOMA protocol. DRL enforces the data compression ratios for the nodes in order to avoid outage constraints at any sensor node. Jointly, it optimizes the power consumption of these sensor nodes. The data compression for such sensor network is vital in order to minimize the power every sensor consumes to maximize its service lifetime. We minimize the expected distortion under practical channel realization and outage probability constraints using NOMA-uplink protocol. Meanwhile, we optimize the power efficiency of the user node in order to increase the battery lifetime.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非正交多址(NOMA)是提高下一代蜂窝通信性能的极有前途的无线接入策略之一。NOMA提供了许多优点,包括更好的频谱效率。本文主要提出了一种节能系统,用于传输从患者身上收集的医疗数据,如脑电图(EEG),以进行连续监测。该框架提出使用深度强化学习(DRL)在上行链路- noma协议中提供智能数据压缩。DRL强制节点的数据压缩比,以避免任何传感器节点的中断约束。共同优化这些传感器节点的功耗。为了最大限度地减少每个传感器消耗的功率,延长其使用寿命,数据压缩对于这种传感器网络至关重要。在实际信道实现和中断概率约束下,我们使用noma -上行协议最小化期望失真。同时,我们优化了用户节点的电源效率,以提高电池的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning Algorithm for Smart Data Compression under NOMA-Uplink Protocol
One of the highly promising radio access strategies for enhancing performance in the next generation cellular communications is non-orthogonal multiple access (NOMA). NOMA offers a number of advantages including better spectrum efficiency. This paper focuses primarily on proposing an energy efficient system for transmitting medical data, such as electroencephalogram (EEG), collected from patients for the sake of continuous monitoring. The framework proposes the use of deep reinforcement learning (DRL) to provide smart data compression in uplink-NOMA protocol. DRL enforces the data compression ratios for the nodes in order to avoid outage constraints at any sensor node. Jointly, it optimizes the power consumption of these sensor nodes. The data compression for such sensor network is vital in order to minimize the power every sensor consumes to maximize its service lifetime. We minimize the expected distortion under practical channel realization and outage probability constraints using NOMA-uplink protocol. Meanwhile, we optimize the power efficiency of the user node in order to increase the battery lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信