基于深度学习的ASM-HEMT高频参数提取

Fredo Chavez, S. Khandelwal
{"title":"基于深度学习的ASM-HEMT高频参数提取","authors":"Fredo Chavez, S. Khandelwal","doi":"10.1109/WAMICON57636.2023.10124884","DOIUrl":null,"url":null,"abstract":"A fast and accurate deep learning (DL) based ASM-HEMT high frequency (HF) model parameter extraction is presented for the first time. The parameter extraction starts with creating a nominal model by extracting ASM-HEMT I–V parameters. The nominal model is used for Monte Carlo simulation of preselected ASM-HEMT HF parameters to generate 90K training data, with a total of 796 million S-parameter data points from a frequency sweep of 14 different bias conditions. The DL model is then trained to instantly predict ASM-HEMT HF parameters from the S-parameter data. The results show that the proposed approach can provide accurate model results, obtaining an error lesser than 10%. The presented approach shows a fast and accurate means for HF parameter extraction with an accuracy typically achieved in manual parameter extraction.","PeriodicalId":270624,"journal":{"name":"2023 IEEE Wireless and Microwave Technology Conference (WAMICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based ASM-HEMT High Frequency Parameter Extraction\",\"authors\":\"Fredo Chavez, S. Khandelwal\",\"doi\":\"10.1109/WAMICON57636.2023.10124884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast and accurate deep learning (DL) based ASM-HEMT high frequency (HF) model parameter extraction is presented for the first time. The parameter extraction starts with creating a nominal model by extracting ASM-HEMT I–V parameters. The nominal model is used for Monte Carlo simulation of preselected ASM-HEMT HF parameters to generate 90K training data, with a total of 796 million S-parameter data points from a frequency sweep of 14 different bias conditions. The DL model is then trained to instantly predict ASM-HEMT HF parameters from the S-parameter data. The results show that the proposed approach can provide accurate model results, obtaining an error lesser than 10%. The presented approach shows a fast and accurate means for HF parameter extraction with an accuracy typically achieved in manual parameter extraction.\",\"PeriodicalId\":270624,\"journal\":{\"name\":\"2023 IEEE Wireless and Microwave Technology Conference (WAMICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Wireless and Microwave Technology Conference (WAMICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAMICON57636.2023.10124884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Wireless and Microwave Technology Conference (WAMICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAMICON57636.2023.10124884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次提出了一种基于深度学习的ASM-HEMT高频模型参数快速准确提取方法。参数提取首先通过提取ASM-HEMT I-V参数创建标称模型。使用标称模型对预选ASM-HEMT高频参数进行蒙特卡罗模拟,生成90K训练数据,其中14种不同偏置条件下的扫频共7.96亿s参数数据点。然后训练DL模型,从s参数数据中即时预测ASM-HEMT HF参数。结果表明,该方法能提供准确的模型结果,误差小于10%。该方法提供了一种快速、准确的高频参数提取方法,其精度达到了人工参数提取的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based ASM-HEMT High Frequency Parameter Extraction
A fast and accurate deep learning (DL) based ASM-HEMT high frequency (HF) model parameter extraction is presented for the first time. The parameter extraction starts with creating a nominal model by extracting ASM-HEMT I–V parameters. The nominal model is used for Monte Carlo simulation of preselected ASM-HEMT HF parameters to generate 90K training data, with a total of 796 million S-parameter data points from a frequency sweep of 14 different bias conditions. The DL model is then trained to instantly predict ASM-HEMT HF parameters from the S-parameter data. The results show that the proposed approach can provide accurate model results, obtaining an error lesser than 10%. The presented approach shows a fast and accurate means for HF parameter extraction with an accuracy typically achieved in manual parameter extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信