在同构集群上调度混合并行应用的两步低成本调优算法

S. Hunold
{"title":"在同构集群上调度混合并行应用的两步低成本调优算法","authors":"S. Hunold","doi":"10.1109/CCGRID.2010.52","DOIUrl":null,"url":null,"abstract":"Due to the strong increase of processing units available to the end user, expressing parallelism of an algorithm is a major challenge for many researchers. Parallel applications are often expressed using a task-parallel model (task graphs), in which tasks can be executed concurrently unless they share a dependency. If these tasks can also be executed in a data-parallel fashion, e.g., by using MPI or OpenMP, then we call it a mixed-parallel programming model. Mixed-parallel applications are often modeled as directed a cyclic graphs (DAGs), where nodes represent the tasks and edges represent data dependencies. To execute a mixed-parallel application efficiently, a good scheduling strategy is required to map the tasks to the available processors. Several algorithms for the scheduling of mixed-parallel applications onto a homogeneous cluster have been proposed. MCPA (Modified CPA) has been shown to lead to efficient schedules. In the allocation phase, MCPA considers the total number of processors allocated to all potentially concurrently running tasks as well as the number of processors in the cluster. In this article, it is shown how MCPA can be extended to obtain a more balanced workload in situations where concurrently running tasks differ significantly in the number of operations. We also show how the allocation procedure can be tuned in order to deal not only with regular DAGs (FFT), but also with irregular ones. We also investigate the question whether additional optimizations of the mapping procedure, such as packing of allocations or backfilling, can reduce the make span of the schedules.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Low-Cost Tuning of Two-Step Algorithms for Scheduling Mixed-Parallel Applications onto Homogeneous Clusters\",\"authors\":\"S. Hunold\",\"doi\":\"10.1109/CCGRID.2010.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the strong increase of processing units available to the end user, expressing parallelism of an algorithm is a major challenge for many researchers. Parallel applications are often expressed using a task-parallel model (task graphs), in which tasks can be executed concurrently unless they share a dependency. If these tasks can also be executed in a data-parallel fashion, e.g., by using MPI or OpenMP, then we call it a mixed-parallel programming model. Mixed-parallel applications are often modeled as directed a cyclic graphs (DAGs), where nodes represent the tasks and edges represent data dependencies. To execute a mixed-parallel application efficiently, a good scheduling strategy is required to map the tasks to the available processors. Several algorithms for the scheduling of mixed-parallel applications onto a homogeneous cluster have been proposed. MCPA (Modified CPA) has been shown to lead to efficient schedules. In the allocation phase, MCPA considers the total number of processors allocated to all potentially concurrently running tasks as well as the number of processors in the cluster. In this article, it is shown how MCPA can be extended to obtain a more balanced workload in situations where concurrently running tasks differ significantly in the number of operations. We also show how the allocation procedure can be tuned in order to deal not only with regular DAGs (FFT), but also with irregular ones. We also investigate the question whether additional optimizations of the mapping procedure, such as packing of allocations or backfilling, can reduce the make span of the schedules.\",\"PeriodicalId\":444485,\"journal\":{\"name\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2010.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于最终用户可用的处理单元的大幅增加,表达算法的并行性是许多研究人员面临的主要挑战。并行应用程序通常使用任务并行模型(任务图)表示,在该模型中,任务可以并发执行,除非它们共享依赖项。如果这些任务也可以以数据并行的方式执行,例如,通过使用MPI或OpenMP,那么我们称之为混合并行编程模型。混合并行应用程序通常建模为有向循环图(dag),其中节点表示任务,边表示数据依赖关系。为了高效地执行混合并行应用程序,需要一个良好的调度策略来将任务映射到可用的处理器。针对混合并行应用程序在同构集群上的调度问题,提出了几种算法。MCPA(修改后的CPA)已被证明可以导致高效的时间表。在分配阶段,MCPA考虑分配给所有可能并发运行的任务的处理器总数以及集群中的处理器数量。在本文中,将展示如何扩展MCPA,以便在并发运行的任务在操作数量上有很大差异的情况下获得更加平衡的工作负载。我们还展示了如何调整分配过程,以便不仅处理常规dag (FFT),还处理不规则dag。我们还研究了映射过程的额外优化,如分配的包装或回填,是否可以减少调度的时间跨度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Cost Tuning of Two-Step Algorithms for Scheduling Mixed-Parallel Applications onto Homogeneous Clusters
Due to the strong increase of processing units available to the end user, expressing parallelism of an algorithm is a major challenge for many researchers. Parallel applications are often expressed using a task-parallel model (task graphs), in which tasks can be executed concurrently unless they share a dependency. If these tasks can also be executed in a data-parallel fashion, e.g., by using MPI or OpenMP, then we call it a mixed-parallel programming model. Mixed-parallel applications are often modeled as directed a cyclic graphs (DAGs), where nodes represent the tasks and edges represent data dependencies. To execute a mixed-parallel application efficiently, a good scheduling strategy is required to map the tasks to the available processors. Several algorithms for the scheduling of mixed-parallel applications onto a homogeneous cluster have been proposed. MCPA (Modified CPA) has been shown to lead to efficient schedules. In the allocation phase, MCPA considers the total number of processors allocated to all potentially concurrently running tasks as well as the number of processors in the cluster. In this article, it is shown how MCPA can be extended to obtain a more balanced workload in situations where concurrently running tasks differ significantly in the number of operations. We also show how the allocation procedure can be tuned in order to deal not only with regular DAGs (FFT), but also with irregular ones. We also investigate the question whether additional optimizations of the mapping procedure, such as packing of allocations or backfilling, can reduce the make span of the schedules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信