大规模仿真的高效千兆以太网交换机模型

Dong Jin, D. Nicol, M. Caesar
{"title":"大规模仿真的高效千兆以太网交换机模型","authors":"Dong Jin, D. Nicol, M. Caesar","doi":"10.1109/PADS.2010.5471659","DOIUrl":null,"url":null,"abstract":"Ethernet is the most widely implemented low-level networking technology used today, with Gigabit Ethernet seen as the emerging standard implementation. The backbones of many large scale networks (e.g., data centers, metro-area deployments) are increasingly made up of Gigabit Ethernet as the underlying technology, and Ethernet is seeing increasing use in dynamic and failure-prone settings (e.g., wireless backhaul, developing regions) with high rates of churn. Correspondingly, when using simulation to study such networks and applications that run on them, the switching makes up a significant fraction of the model, and can make up a significant amount of the simulation activity. This paper describes a unique testbed that gathers highly accurate measurements of loss and latency through a switch, experiments that reveal the behavior of three commercial switches, and then proposes simulation models that explain the observed data. The models vary in their computational complexity and in their accuracy with respect to frame loss patterns, and latency through the switch. In particular, the simplest model predicts a frame's loss and latency immediately at the time of its arrival, which keeps the computational cost close to one event per frame per switch, provides excellent temporal separation between switches (useful for parallel simulation), while providing excellent accuracy for loss and adequate accuracy for latency.","PeriodicalId":388814,"journal":{"name":"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient Gigabit Ethernet Switch Models for Large-Scale Simulation\",\"authors\":\"Dong Jin, D. Nicol, M. Caesar\",\"doi\":\"10.1109/PADS.2010.5471659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethernet is the most widely implemented low-level networking technology used today, with Gigabit Ethernet seen as the emerging standard implementation. The backbones of many large scale networks (e.g., data centers, metro-area deployments) are increasingly made up of Gigabit Ethernet as the underlying technology, and Ethernet is seeing increasing use in dynamic and failure-prone settings (e.g., wireless backhaul, developing regions) with high rates of churn. Correspondingly, when using simulation to study such networks and applications that run on them, the switching makes up a significant fraction of the model, and can make up a significant amount of the simulation activity. This paper describes a unique testbed that gathers highly accurate measurements of loss and latency through a switch, experiments that reveal the behavior of three commercial switches, and then proposes simulation models that explain the observed data. The models vary in their computational complexity and in their accuracy with respect to frame loss patterns, and latency through the switch. In particular, the simplest model predicts a frame's loss and latency immediately at the time of its arrival, which keeps the computational cost close to one event per frame per switch, provides excellent temporal separation between switches (useful for parallel simulation), while providing excellent accuracy for loss and adequate accuracy for latency.\",\"PeriodicalId\":388814,\"journal\":{\"name\":\"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PADS.2010.5471659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2010.5471659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

以太网是目前使用的实现最广泛的低级网络技术,千兆以太网被视为新兴的标准实现。许多大型网络的骨干(例如,数据中心、城域部署)越来越多地由千兆以太网作为底层技术组成,并且以太网在动态和易发生故障的环境(例如,无线回程、发展中地区)中使用的频率越来越高。相应地,当使用仿真来研究此类网络及其上运行的应用程序时,交换占模型的很大一部分,并且可以占仿真活动的很大一部分。本文描述了一个独特的测试平台,它通过交换机收集了高度精确的损耗和延迟测量,实验揭示了三个商用交换机的行为,然后提出了解释观测数据的仿真模型。这些模型在计算复杂度和关于帧丢失模式的准确性以及通过切换的延迟方面各不相同。特别是,最简单的模型在帧到达时立即预测帧的丢失和延迟,这使计算成本接近每个交换机每帧一个事件,在交换机之间提供出色的时间分离(对并行模拟有用),同时提供出色的丢失精度和足够的延迟精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Gigabit Ethernet Switch Models for Large-Scale Simulation
Ethernet is the most widely implemented low-level networking technology used today, with Gigabit Ethernet seen as the emerging standard implementation. The backbones of many large scale networks (e.g., data centers, metro-area deployments) are increasingly made up of Gigabit Ethernet as the underlying technology, and Ethernet is seeing increasing use in dynamic and failure-prone settings (e.g., wireless backhaul, developing regions) with high rates of churn. Correspondingly, when using simulation to study such networks and applications that run on them, the switching makes up a significant fraction of the model, and can make up a significant amount of the simulation activity. This paper describes a unique testbed that gathers highly accurate measurements of loss and latency through a switch, experiments that reveal the behavior of three commercial switches, and then proposes simulation models that explain the observed data. The models vary in their computational complexity and in their accuracy with respect to frame loss patterns, and latency through the switch. In particular, the simplest model predicts a frame's loss and latency immediately at the time of its arrival, which keeps the computational cost close to one event per frame per switch, provides excellent temporal separation between switches (useful for parallel simulation), while providing excellent accuracy for loss and adequate accuracy for latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信