自主水下航行器分层多智能体指挥控制系统

Tan Yew Teck, M. Chitre
{"title":"自主水下航行器分层多智能体指挥控制系统","authors":"Tan Yew Teck, M. Chitre","doi":"10.1109/AUV.2012.6380760","DOIUrl":null,"url":null,"abstract":"Inspired by the command structure of a manned submarine, we have developed a Command and Control (C2) system for autonomous underwater vehicles (AUVs) that allocates mission, navigation and vehicle tasks to individual self-contained agents, each with their own responsibilities and behaviors. These agents are distributed over different levels of control hierarchies where they behave deliberately at the supervisory level and reactively at the vehicle and navigational level. The collective interactions among the pool of agents enables the AUV to achieve its mission objectives autonomously. The mission supervisory level adopts a backseat driver paradigm where mission-level decisions are made based on the inputs provided by a pool of backseat driver (BD) agents. Each BD agent is responsible for handling different aspects of a mission and provides input in the form of mission points to achieve specific mission sub-tasks. This approach offers several advantages. Firstly, complex mission objectives can be divided into simpler mission sub-tasks and handled by different BD agents. Secondly, the C2 system's capabilities in coping with new mission scenarios can be easily extended through the introduction of new BD agents that generates the required maneuvering patterns. New mission behaviors may emerge from the cooperation and/or competition among the BD agents. These complex behaviors increase the level of mission autonomy. The C2 system described above is being used in the STARFISH AUVs and has been used to perform single AUV surveying missions as well as multi-AUV cooperative positioning missions.","PeriodicalId":340133,"journal":{"name":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Hierarchical multi-agent command and control system for autonomous underwater vehicles\",\"authors\":\"Tan Yew Teck, M. Chitre\",\"doi\":\"10.1109/AUV.2012.6380760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the command structure of a manned submarine, we have developed a Command and Control (C2) system for autonomous underwater vehicles (AUVs) that allocates mission, navigation and vehicle tasks to individual self-contained agents, each with their own responsibilities and behaviors. These agents are distributed over different levels of control hierarchies where they behave deliberately at the supervisory level and reactively at the vehicle and navigational level. The collective interactions among the pool of agents enables the AUV to achieve its mission objectives autonomously. The mission supervisory level adopts a backseat driver paradigm where mission-level decisions are made based on the inputs provided by a pool of backseat driver (BD) agents. Each BD agent is responsible for handling different aspects of a mission and provides input in the form of mission points to achieve specific mission sub-tasks. This approach offers several advantages. Firstly, complex mission objectives can be divided into simpler mission sub-tasks and handled by different BD agents. Secondly, the C2 system's capabilities in coping with new mission scenarios can be easily extended through the introduction of new BD agents that generates the required maneuvering patterns. New mission behaviors may emerge from the cooperation and/or competition among the BD agents. These complex behaviors increase the level of mission autonomy. The C2 system described above is being used in the STARFISH AUVs and has been used to perform single AUV surveying missions as well as multi-AUV cooperative positioning missions.\",\"PeriodicalId\":340133,\"journal\":{\"name\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2012.6380760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2012.6380760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

受载人潜艇指挥结构的启发,我们开发了一种用于自主水下航行器(auv)的指挥与控制(C2)系统,该系统将任务、导航和载具任务分配给独立的自包含代理,每个代理都有自己的责任和行为。这些代理分布在不同层次的控制层次上,它们在监管层故意行为,在车辆和导航层被动行为。智能体之间的集体交互使AUV能够自主地完成任务目标。任务监督层采用后座驾驶员范式,其中任务级决策是根据一组后座驾驶员(BD)代理提供的输入做出的。每个BD代理负责处理任务的不同方面,并以任务点的形式提供输入,以完成特定的任务子任务。这种方法有几个优点。首先,复杂的任务目标可以划分为更简单的任务子任务,由不同的BD agent来处理。其次,C2系统应对新任务场景的能力可以通过引入生成所需机动模式的新BD代理轻松扩展。新的任务行为可能从BD代理之间的合作和/或竞争中产生。这些复杂的行为增加了任务的自主性。上面描述的C2系统正在海星AUV中使用,并已用于执行单AUV测量任务以及多AUV合作定位任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical multi-agent command and control system for autonomous underwater vehicles
Inspired by the command structure of a manned submarine, we have developed a Command and Control (C2) system for autonomous underwater vehicles (AUVs) that allocates mission, navigation and vehicle tasks to individual self-contained agents, each with their own responsibilities and behaviors. These agents are distributed over different levels of control hierarchies where they behave deliberately at the supervisory level and reactively at the vehicle and navigational level. The collective interactions among the pool of agents enables the AUV to achieve its mission objectives autonomously. The mission supervisory level adopts a backseat driver paradigm where mission-level decisions are made based on the inputs provided by a pool of backseat driver (BD) agents. Each BD agent is responsible for handling different aspects of a mission and provides input in the form of mission points to achieve specific mission sub-tasks. This approach offers several advantages. Firstly, complex mission objectives can be divided into simpler mission sub-tasks and handled by different BD agents. Secondly, the C2 system's capabilities in coping with new mission scenarios can be easily extended through the introduction of new BD agents that generates the required maneuvering patterns. New mission behaviors may emerge from the cooperation and/or competition among the BD agents. These complex behaviors increase the level of mission autonomy. The C2 system described above is being used in the STARFISH AUVs and has been used to perform single AUV surveying missions as well as multi-AUV cooperative positioning missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信