基于eeg的情绪识别的基准端到端周期一致多任务变分自编码器

Kranti S. Kamble, J. Sengupta
{"title":"基于eeg的情绪识别的基准端到端周期一致多任务变分自编码器","authors":"Kranti S. Kamble, J. Sengupta","doi":"10.1109/TENSYMP55890.2023.10223616","DOIUrl":null,"url":null,"abstract":"Affective computing, particularly the identification of emotions from multichannel electroencephalography (EEG) signals, has gained importance. In this study, we propose a novel deep neural network model called Cycle Consistent Multi-Task Variational Autoencoder (CycleMVAE) to simultaneously investigate pairwise translation of emotional features, signal reconstruction, and emotion classification across two different EEG recording samples. CycleMVAE comprises two Variational Autoencoders (VAEs) and a supervised classifier. Each VAE consists of an encoder and a decoder. The encoder of the first VAE transfers emotional properties from EEG sample X to a compact latent space Z, while the decoder retrieves these features from Z to transfer them to EEG sample Y. Similarly, the second VAE uses the compact latent space Z’ to transfer emotion features from EEG sample Y to EEG sample X. This forms a cyclic translation of feature among EEG sample recordings. The model is trained using reconstructed loss, cycle consistency loss, and latent vector regularization loss, with a supervised classifier used to categorize emotions into arousal, valence, and dominance categories. The proposed approach improves EEG classification performance while reducing pre-processing complexity. The effectiveness of the proposed approach has been validated by experimental findings on the multimodal DREAMER emotional database.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"735 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CycleMVAE: Benchmarking End-to-End Cycle-Consistent Multi-Task Variational Autoencoder for EEG-Based Emotion Recognition\",\"authors\":\"Kranti S. Kamble, J. Sengupta\",\"doi\":\"10.1109/TENSYMP55890.2023.10223616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective computing, particularly the identification of emotions from multichannel electroencephalography (EEG) signals, has gained importance. In this study, we propose a novel deep neural network model called Cycle Consistent Multi-Task Variational Autoencoder (CycleMVAE) to simultaneously investigate pairwise translation of emotional features, signal reconstruction, and emotion classification across two different EEG recording samples. CycleMVAE comprises two Variational Autoencoders (VAEs) and a supervised classifier. Each VAE consists of an encoder and a decoder. The encoder of the first VAE transfers emotional properties from EEG sample X to a compact latent space Z, while the decoder retrieves these features from Z to transfer them to EEG sample Y. Similarly, the second VAE uses the compact latent space Z’ to transfer emotion features from EEG sample Y to EEG sample X. This forms a cyclic translation of feature among EEG sample recordings. The model is trained using reconstructed loss, cycle consistency loss, and latent vector regularization loss, with a supervised classifier used to categorize emotions into arousal, valence, and dominance categories. The proposed approach improves EEG classification performance while reducing pre-processing complexity. The effectiveness of the proposed approach has been validated by experimental findings on the multimodal DREAMER emotional database.\",\"PeriodicalId\":314726,\"journal\":{\"name\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"735 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP55890.2023.10223616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感计算,特别是从多通道脑电图(EEG)信号中识别情绪,已经变得越来越重要。在这项研究中,我们提出了一种新的深度神经网络模型,称为周期一致多任务变分自编码器(CycleMVAE),以同时研究两种不同EEG记录样本的情绪特征的两两翻译、信号重建和情绪分类。CycleMVAE包括两个变分自编码器(vae)和一个监督分类器。每个VAE由一个编码器和一个解码器组成。第一个VAE的编码器将EEG样本X中的情感属性转移到紧凑的潜在空间Z中,解码器从Z中检索这些特征并将其转移到EEG样本Y中。同样,第二个VAE利用紧凑的潜在空间Z′将EEG样本Y中的情感特征转移到EEG样本X中,形成了EEG样本记录之间特征的循环转换。该模型使用重建损失、周期一致性损失和潜在向量正则化损失进行训练,并使用监督分类器将情绪分为唤醒、效价和优势类别。该方法在降低预处理复杂度的同时提高了脑电分类性能。在多模态做梦者情绪数据库上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CycleMVAE: Benchmarking End-to-End Cycle-Consistent Multi-Task Variational Autoencoder for EEG-Based Emotion Recognition
Affective computing, particularly the identification of emotions from multichannel electroencephalography (EEG) signals, has gained importance. In this study, we propose a novel deep neural network model called Cycle Consistent Multi-Task Variational Autoencoder (CycleMVAE) to simultaneously investigate pairwise translation of emotional features, signal reconstruction, and emotion classification across two different EEG recording samples. CycleMVAE comprises two Variational Autoencoders (VAEs) and a supervised classifier. Each VAE consists of an encoder and a decoder. The encoder of the first VAE transfers emotional properties from EEG sample X to a compact latent space Z, while the decoder retrieves these features from Z to transfer them to EEG sample Y. Similarly, the second VAE uses the compact latent space Z’ to transfer emotion features from EEG sample Y to EEG sample X. This forms a cyclic translation of feature among EEG sample recordings. The model is trained using reconstructed loss, cycle consistency loss, and latent vector regularization loss, with a supervised classifier used to categorize emotions into arousal, valence, and dominance categories. The proposed approach improves EEG classification performance while reducing pre-processing complexity. The effectiveness of the proposed approach has been validated by experimental findings on the multimodal DREAMER emotional database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信