{"title":"PVDF换能器-单层和多层结构的性能比较","authors":"Qian Zhang, Peter A. Lewin, P. E. Bloomfield","doi":"10.1109/ULTSYM.1995.495804","DOIUrl":null,"url":null,"abstract":"To improve the pulse-echo sensitivity of a piezopolymer transducer while preserving its broad bandwidth property, several multilayer transducer design approaches have been suggested. This paper presents formulae describing three types of multilayer transducers-a Barker code multilayer-, folded multilayer and switchable Barker code multilayer transducer. Based on the formulae derived, the pulse-echo responses of the multilayer transducers under various excitation signals were calculated and compared with those achievable with an equivalent PZT transducer. Also, the influence of a tissue layer on the transducer responses was examined. The simulation results indicated that the switchable Barker code transducer design outperforms all other transducer designs analyzed with respect to the axial resolution and overall sensitivity in the medical imaging frequency range. To verify the simulation results, several prototypes of multilayer transducers were fabricated and tested in water. A good agreement between the experimental results and the corresponding computer predictions was achieved.","PeriodicalId":268177,"journal":{"name":"1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"PVDF transducers-a performance comparison of single layer and multilayer structures\",\"authors\":\"Qian Zhang, Peter A. Lewin, P. E. Bloomfield\",\"doi\":\"10.1109/ULTSYM.1995.495804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the pulse-echo sensitivity of a piezopolymer transducer while preserving its broad bandwidth property, several multilayer transducer design approaches have been suggested. This paper presents formulae describing three types of multilayer transducers-a Barker code multilayer-, folded multilayer and switchable Barker code multilayer transducer. Based on the formulae derived, the pulse-echo responses of the multilayer transducers under various excitation signals were calculated and compared with those achievable with an equivalent PZT transducer. Also, the influence of a tissue layer on the transducer responses was examined. The simulation results indicated that the switchable Barker code transducer design outperforms all other transducer designs analyzed with respect to the axial resolution and overall sensitivity in the medical imaging frequency range. To verify the simulation results, several prototypes of multilayer transducers were fabricated and tested in water. A good agreement between the experimental results and the corresponding computer predictions was achieved.\",\"PeriodicalId\":268177,\"journal\":{\"name\":\"1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.1995.495804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1995.495804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PVDF transducers-a performance comparison of single layer and multilayer structures
To improve the pulse-echo sensitivity of a piezopolymer transducer while preserving its broad bandwidth property, several multilayer transducer design approaches have been suggested. This paper presents formulae describing three types of multilayer transducers-a Barker code multilayer-, folded multilayer and switchable Barker code multilayer transducer. Based on the formulae derived, the pulse-echo responses of the multilayer transducers under various excitation signals were calculated and compared with those achievable with an equivalent PZT transducer. Also, the influence of a tissue layer on the transducer responses was examined. The simulation results indicated that the switchable Barker code transducer design outperforms all other transducer designs analyzed with respect to the axial resolution and overall sensitivity in the medical imaging frequency range. To verify the simulation results, several prototypes of multilayer transducers were fabricated and tested in water. A good agreement between the experimental results and the corresponding computer predictions was achieved.