鲁棒One-vs-Rest分类的解耦自编码器

Max Lübbering, M. Gebauer, Rajkumar Ramamurthy, C. Bauckhage, R. Sifa
{"title":"鲁棒One-vs-Rest分类的解耦自编码器","authors":"Max Lübbering, M. Gebauer, Rajkumar Ramamurthy, C. Bauckhage, R. Sifa","doi":"10.1109/DSAA53316.2021.9564136","DOIUrl":null,"url":null,"abstract":"One-vs-Rest (OVR) classification aims to distinguish a single class of interest from other classes. The concept of novelty detection and robustness to dataset shift becomes crucial in OVR when the scope of the rest class extends from the classes observed during training to unseen and possibly unrelated classes. In this work, we propose a novel architecture, namely Decoupling Autoencoder (DAE) to tackle the common issue of robustness w.r.t. out-of-distribution samples which is prevalent in classifiers such as multi-layer perceptrons (MLP) and ensemble architectures. Experiments on plain classification, outlier detection, and dataset shift tasks show DAE to achieve robust performance across these tasks compared to the baselines, which tend to fail completely, when exposed to dataset shift. While DAE and the baselines yield rather uncalibrated predictions on the outlier detection and dataset shift task, we found that DAE calibration is more stable across all tasks. Therefore, calibration measures applied to the classification task could also improve the calibration of the outlier detection and dataset shift scenarios for DAE.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decoupling Autoencoders for Robust One-vs-Rest Classification\",\"authors\":\"Max Lübbering, M. Gebauer, Rajkumar Ramamurthy, C. Bauckhage, R. Sifa\",\"doi\":\"10.1109/DSAA53316.2021.9564136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-vs-Rest (OVR) classification aims to distinguish a single class of interest from other classes. The concept of novelty detection and robustness to dataset shift becomes crucial in OVR when the scope of the rest class extends from the classes observed during training to unseen and possibly unrelated classes. In this work, we propose a novel architecture, namely Decoupling Autoencoder (DAE) to tackle the common issue of robustness w.r.t. out-of-distribution samples which is prevalent in classifiers such as multi-layer perceptrons (MLP) and ensemble architectures. Experiments on plain classification, outlier detection, and dataset shift tasks show DAE to achieve robust performance across these tasks compared to the baselines, which tend to fail completely, when exposed to dataset shift. While DAE and the baselines yield rather uncalibrated predictions on the outlier detection and dataset shift task, we found that DAE calibration is more stable across all tasks. Therefore, calibration measures applied to the classification task could also improve the calibration of the outlier detection and dataset shift scenarios for DAE.\",\"PeriodicalId\":129612,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA53316.2021.9564136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

One-vs-Rest (OVR)分类旨在将单个感兴趣的类与其他类区分开来。当剩余类的范围从训练期间观察到的类扩展到不可见的和可能不相关的类时,新颖性检测和对数据集移位的鲁棒性的概念在OVR中变得至关重要。在这项工作中,我们提出了一种新的架构,即解耦自编码器(DAE),以解决在多层感知器(MLP)和集成架构等分类器中普遍存在的分布外样本的鲁棒性问题。在普通分类、离群值检测和数据集移动任务上的实验表明,与基线相比,DAE在这些任务中实现了稳健的性能,而基线在数据集移动时往往完全失败。虽然DAE和基线在异常值检测和数据集移位任务上产生了相当未经校准的预测,但我们发现DAE校准在所有任务中都更加稳定。因此,应用于分类任务的校准措施也可以改善DAE的离群点检测和数据集移位场景的校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling Autoencoders for Robust One-vs-Rest Classification
One-vs-Rest (OVR) classification aims to distinguish a single class of interest from other classes. The concept of novelty detection and robustness to dataset shift becomes crucial in OVR when the scope of the rest class extends from the classes observed during training to unseen and possibly unrelated classes. In this work, we propose a novel architecture, namely Decoupling Autoencoder (DAE) to tackle the common issue of robustness w.r.t. out-of-distribution samples which is prevalent in classifiers such as multi-layer perceptrons (MLP) and ensemble architectures. Experiments on plain classification, outlier detection, and dataset shift tasks show DAE to achieve robust performance across these tasks compared to the baselines, which tend to fail completely, when exposed to dataset shift. While DAE and the baselines yield rather uncalibrated predictions on the outlier detection and dataset shift task, we found that DAE calibration is more stable across all tasks. Therefore, calibration measures applied to the classification task could also improve the calibration of the outlier detection and dataset shift scenarios for DAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信