多层感知器训练算法在糖尿病预测中的性能分析

Sumi Alice Saji, K. Balachandran
{"title":"多层感知器训练算法在糖尿病预测中的性能分析","authors":"Sumi Alice Saji, K. Balachandran","doi":"10.1109/ICACEA.2015.7164695","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence plays a vital role in developing machines or software that can create intelligence. Artificial Neural Networks is a field of neuroscience which contributes tremendous developments in Artificial Intelligence. This paper focuses on the study of performance of various training algorithms of Multilayer Perceptrons in Diabetes Prediction. In this study, we have used Pima Indian Diabetes data set from UCI Machine Learning Repository as input dataset. The system is implemented in MatlabR2013. The Pima Indian Diabetes dataset consists of about 768 instances. The input data is the patient history and the target output is the prediction result as tested positive or tested negative. From the performance analysis, it was observed that out of all the training algorithms, Levenberg-Marquardt Algorithm has given optimal training results.","PeriodicalId":202893,"journal":{"name":"2015 International Conference on Advances in Computer Engineering and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Performance analysis of training algorithms of multilayer perceptrons in diabetes prediction\",\"authors\":\"Sumi Alice Saji, K. Balachandran\",\"doi\":\"10.1109/ICACEA.2015.7164695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence plays a vital role in developing machines or software that can create intelligence. Artificial Neural Networks is a field of neuroscience which contributes tremendous developments in Artificial Intelligence. This paper focuses on the study of performance of various training algorithms of Multilayer Perceptrons in Diabetes Prediction. In this study, we have used Pima Indian Diabetes data set from UCI Machine Learning Repository as input dataset. The system is implemented in MatlabR2013. The Pima Indian Diabetes dataset consists of about 768 instances. The input data is the patient history and the target output is the prediction result as tested positive or tested negative. From the performance analysis, it was observed that out of all the training algorithms, Levenberg-Marquardt Algorithm has given optimal training results.\",\"PeriodicalId\":202893,\"journal\":{\"name\":\"2015 International Conference on Advances in Computer Engineering and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advances in Computer Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACEA.2015.7164695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advances in Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACEA.2015.7164695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

人工智能在开发能够创造智能的机器或软件方面发挥着至关重要的作用。人工神经网络是神经科学的一个领域,对人工智能的发展做出了巨大的贡献。本文主要研究多层感知器在糖尿病预测中的各种训练算法的性能。在本研究中,我们使用来自UCI机器学习存储库的皮马印第安人糖尿病数据集作为输入数据集。该系统是在MatlabR2013中实现的。皮马印第安人糖尿病数据集由大约768个实例组成。输入数据是患者的病史,目标输出是检测为阳性或阴性的预测结果。从性能分析中可以看出,在所有的训练算法中,Levenberg-Marquardt算法给出了最优的训练结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of training algorithms of multilayer perceptrons in diabetes prediction
Artificial Intelligence plays a vital role in developing machines or software that can create intelligence. Artificial Neural Networks is a field of neuroscience which contributes tremendous developments in Artificial Intelligence. This paper focuses on the study of performance of various training algorithms of Multilayer Perceptrons in Diabetes Prediction. In this study, we have used Pima Indian Diabetes data set from UCI Machine Learning Repository as input dataset. The system is implemented in MatlabR2013. The Pima Indian Diabetes dataset consists of about 768 instances. The input data is the patient history and the target output is the prediction result as tested positive or tested negative. From the performance analysis, it was observed that out of all the training algorithms, Levenberg-Marquardt Algorithm has given optimal training results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信