使用分组大小分配来识别P2P-TV流量

Li Jin, Zhang Xin, Zuo Xiao-Liang, Wang Hui
{"title":"使用分组大小分配来识别P2P-TV流量","authors":"Li Jin, Zhang Xin, Zuo Xiao-Liang, Wang Hui","doi":"10.1109/CYBERC.2010.35","DOIUrl":null,"url":null,"abstract":"We propose an approach to accurately identify the traffic generaed by P2P-TV applications. This approach only relies on accounting packet size distribution (PSD) of the P2P-TV application during small time-windows. The rationale is that the packet size distributions of P2P-TV applications are different from each other. Based on the statistic, we make use of Support Vector Machines on a large set of P2P-TV test-bed traces. Experiment results show that our approach is effective and reliable to identify P2P-TV traffic.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Packet Size Distribution to Identify P2P-TV Traffic\",\"authors\":\"Li Jin, Zhang Xin, Zuo Xiao-Liang, Wang Hui\",\"doi\":\"10.1109/CYBERC.2010.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to accurately identify the traffic generaed by P2P-TV applications. This approach only relies on accounting packet size distribution (PSD) of the P2P-TV application during small time-windows. The rationale is that the packet size distributions of P2P-TV applications are different from each other. Based on the statistic, we make use of Support Vector Machines on a large set of P2P-TV test-bed traces. Experiment results show that our approach is effective and reliable to identify P2P-TV traffic.\",\"PeriodicalId\":315132,\"journal\":{\"name\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2010.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种准确识别P2P-TV应用程序产生的流量的方法。该方法仅依赖于P2P-TV应用程序在小时间窗期间的分组大小分布(PSD)。其基本原理是P2P-TV应用程序的数据包大小分布彼此不同。在此基础上,利用支持向量机对大量的P2P-TV测试轨迹进行了分析。实验结果表明,该方法能够有效、可靠地识别P2P-TV流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Packet Size Distribution to Identify P2P-TV Traffic
We propose an approach to accurately identify the traffic generaed by P2P-TV applications. This approach only relies on accounting packet size distribution (PSD) of the P2P-TV application during small time-windows. The rationale is that the packet size distributions of P2P-TV applications are different from each other. Based on the statistic, we make use of Support Vector Machines on a large set of P2P-TV test-bed traces. Experiment results show that our approach is effective and reliable to identify P2P-TV traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信