{"title":"一种用于糖尿病预测和诊断的优化递归广义回归神经网络Oracle","authors":"Dana Bani-Hani, P. Patel, Tasneem Alshaikh","doi":"10.34257/GJCSTDVOL19IS2PG1","DOIUrl":null,"url":null,"abstract":"Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (RGRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Optimized Recursive General Regression Neural Network Oracle for the Prediction and Diagnosis of Diabetes\",\"authors\":\"Dana Bani-Hani, P. Patel, Tasneem Alshaikh\",\"doi\":\"10.34257/GJCSTDVOL19IS2PG1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (RGRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier.\",\"PeriodicalId\":340110,\"journal\":{\"name\":\"Global journal of computer science and technology\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global journal of computer science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/GJCSTDVOL19IS2PG1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJCSTDVOL19IS2PG1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimized Recursive General Regression Neural Network Oracle for the Prediction and Diagnosis of Diabetes
Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (RGRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier.