{"title":"求解非线性偏微分方程的傅立叶谱方法","authors":"H. N. Hassan, Hassan K. Saleh","doi":"10.12816/0006177","DOIUrl":null,"url":null,"abstract":"The spectral collocation or pseudospectral (PS) methods (Fourier transform methods) combined with temporal discretization techniques to numerically compute solutions of some partial differential equations (PDEs). In this paper, we solve the Korteweg-de Vries (KdV) equation using a Fourier spectral collocation method to discretize the space variable, leap frog and classical fourth-order Runge-Kutta scheme (RK4) for time dependence. Also, Boussinesq equation is solving by a Fourier spectral collocation method to discretize the space variable, finite difference and classical fourth-order RungeKutta scheme (RK4) for time dependence. Our implementation employs the Fast Fourier Transform (FFT) algorithm.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fourier Spectral Methods for Solving Some Nonlinear Partial Differential Equations\",\"authors\":\"H. N. Hassan, Hassan K. Saleh\",\"doi\":\"10.12816/0006177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral collocation or pseudospectral (PS) methods (Fourier transform methods) combined with temporal discretization techniques to numerically compute solutions of some partial differential equations (PDEs). In this paper, we solve the Korteweg-de Vries (KdV) equation using a Fourier spectral collocation method to discretize the space variable, leap frog and classical fourth-order Runge-Kutta scheme (RK4) for time dependence. Also, Boussinesq equation is solving by a Fourier spectral collocation method to discretize the space variable, finite difference and classical fourth-order RungeKutta scheme (RK4) for time dependence. Our implementation employs the Fast Fourier Transform (FFT) algorithm.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0006177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0006177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fourier Spectral Methods for Solving Some Nonlinear Partial Differential Equations
The spectral collocation or pseudospectral (PS) methods (Fourier transform methods) combined with temporal discretization techniques to numerically compute solutions of some partial differential equations (PDEs). In this paper, we solve the Korteweg-de Vries (KdV) equation using a Fourier spectral collocation method to discretize the space variable, leap frog and classical fourth-order Runge-Kutta scheme (RK4) for time dependence. Also, Boussinesq equation is solving by a Fourier spectral collocation method to discretize the space variable, finite difference and classical fourth-order RungeKutta scheme (RK4) for time dependence. Our implementation employs the Fast Fourier Transform (FFT) algorithm.