krylov子空间法与截断法在热方程中识别未知源的比较

O. Coulibaly, B. Sangaré
{"title":"krylov子空间法与截断法在热方程中识别未知源的比较","authors":"O. Coulibaly, B. Sangaré","doi":"10.37418/amsj.12.2.5","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the problem of approximating a solution of an inverse parabolic problem. In order to overcome the instability of the original problem, we use the troncature spectral method to construct a stable approximate solution. To calculate the stabilized solution, we use a numerical procedure based on the Krylov subspace method. This algorithm provides us a practical and simple method to calculate numerically the stabilized solution. Some Numerical tests are presented to illustrate the accuracy and efficiency of this method.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON BETWEEN THE KRYLOV SUBSPACE METHOD AND THE TRUNCATION METHOD FOR IDENTIFYING AN UNKNOWN SOURCE IN THE HEAT EQUATION\",\"authors\":\"O. Coulibaly, B. Sangaré\",\"doi\":\"10.37418/amsj.12.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the problem of approximating a solution of an inverse parabolic problem. In order to overcome the instability of the original problem, we use the troncature spectral method to construct a stable approximate solution. To calculate the stabilized solution, we use a numerical procedure based on the Krylov subspace method. This algorithm provides us a practical and simple method to calculate numerically the stabilized solution. Some Numerical tests are presented to illustrate the accuracy and efficiency of this method.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类反抛物型问题解的近似问题。为了克服原问题的不稳定性,我们采用时域谱法构造了一个稳定的近似解。为了计算稳定解,我们使用了基于Krylov子空间方法的数值程序。该算法为稳定解的数值计算提供了一种实用、简便的方法。数值试验表明了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARISON BETWEEN THE KRYLOV SUBSPACE METHOD AND THE TRUNCATION METHOD FOR IDENTIFYING AN UNKNOWN SOURCE IN THE HEAT EQUATION
In this paper, we are concerned with the problem of approximating a solution of an inverse parabolic problem. In order to overcome the instability of the original problem, we use the troncature spectral method to construct a stable approximate solution. To calculate the stabilized solution, we use a numerical procedure based on the Krylov subspace method. This algorithm provides us a practical and simple method to calculate numerically the stabilized solution. Some Numerical tests are presented to illustrate the accuracy and efficiency of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信