N. F. Amlee, N. Nazmi, M. K. Shabdin, I. Bahiuddin, S. Mazlan, N. A. Nordin
{"title":"石墨水凝胶型磁流变体的力传感性能研究","authors":"N. F. Amlee, N. Nazmi, M. K. Shabdin, I. Bahiuddin, S. Mazlan, N. A. Nordin","doi":"10.1109/IECBES54088.2022.10079597","DOIUrl":null,"url":null,"abstract":"The higher demand for sensors and actuators devices is a result of machines and robotic devices incorporating electronics devices in its system. Intelligent material like hydrogel-based magnetorheological plastomer (HMRP) can be considered for its potential to be used in such system, particularly in a low force sensing system. However, the studies on HMRP’s potential to be used in a low force detecting system has not been further explored. In this paper, HMRP with 0 wt. % to 15 wt.% of graphite were fabricated and their resistance was tested under applied force ranging from 0 N - 5 N. The resistance was also measured in the absence and presence of magnetic field. With 15 wt.% of graphite, the resistance in the HMRP samples could reach as low as ~3000 Ω while applying load up to 5 N resulted in resistance as low as ~600 Ω in the absence of magnetic field. In the presence of 0.141 mT of magnetic field, the resistance of HRMP sample with 15 wt.% of graphite could reach as low as ~2500 Ω. The establishment of this relationship indicates that HMRP has the potential to be used in a sensing system.Clinical Relevance– This research can be used as a base to help in improving methods for physiology or therapy.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Force Sensing Performance of Hydrogel-based Magnetorheological Plastomers with Graphite\",\"authors\":\"N. F. Amlee, N. Nazmi, M. K. Shabdin, I. Bahiuddin, S. Mazlan, N. A. Nordin\",\"doi\":\"10.1109/IECBES54088.2022.10079597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The higher demand for sensors and actuators devices is a result of machines and robotic devices incorporating electronics devices in its system. Intelligent material like hydrogel-based magnetorheological plastomer (HMRP) can be considered for its potential to be used in such system, particularly in a low force sensing system. However, the studies on HMRP’s potential to be used in a low force detecting system has not been further explored. In this paper, HMRP with 0 wt. % to 15 wt.% of graphite were fabricated and their resistance was tested under applied force ranging from 0 N - 5 N. The resistance was also measured in the absence and presence of magnetic field. With 15 wt.% of graphite, the resistance in the HMRP samples could reach as low as ~3000 Ω while applying load up to 5 N resulted in resistance as low as ~600 Ω in the absence of magnetic field. In the presence of 0.141 mT of magnetic field, the resistance of HRMP sample with 15 wt.% of graphite could reach as low as ~2500 Ω. The establishment of this relationship indicates that HMRP has the potential to be used in a sensing system.Clinical Relevance– This research can be used as a base to help in improving methods for physiology or therapy.\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Force Sensing Performance of Hydrogel-based Magnetorheological Plastomers with Graphite
The higher demand for sensors and actuators devices is a result of machines and robotic devices incorporating electronics devices in its system. Intelligent material like hydrogel-based magnetorheological plastomer (HMRP) can be considered for its potential to be used in such system, particularly in a low force sensing system. However, the studies on HMRP’s potential to be used in a low force detecting system has not been further explored. In this paper, HMRP with 0 wt. % to 15 wt.% of graphite were fabricated and their resistance was tested under applied force ranging from 0 N - 5 N. The resistance was also measured in the absence and presence of magnetic field. With 15 wt.% of graphite, the resistance in the HMRP samples could reach as low as ~3000 Ω while applying load up to 5 N resulted in resistance as low as ~600 Ω in the absence of magnetic field. In the presence of 0.141 mT of magnetic field, the resistance of HRMP sample with 15 wt.% of graphite could reach as low as ~2500 Ω. The establishment of this relationship indicates that HMRP has the potential to be used in a sensing system.Clinical Relevance– This research can be used as a base to help in improving methods for physiology or therapy.