合成数据:一种新的监管工具

J. Hull, Jay Cao, Jacky Chen, Zissis Poulos, dorothy zhang
{"title":"合成数据:一种新的监管工具","authors":"J. Hull, Jay Cao, Jacky Chen, Zissis Poulos, dorothy zhang","doi":"10.2139/ssrn.3908626","DOIUrl":null,"url":null,"abstract":"Machine learning tools have been developed to generate synthetic data sets that are indistinguishable from available historical data. In this paper, we investigate whether the tools can be used for stress testing. In particular we test whether synthetic data can be used to provide reliable risk measures when the confidence levels are high. Our results are encouraging and suggest that synthetic data produced from the most recent 250 days of historical data are potentially useful for determining regulatory market risk capital requirements.","PeriodicalId":152939,"journal":{"name":"Machine Learning eJournal","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthetic Data: A New Regulatory Tool\",\"authors\":\"J. Hull, Jay Cao, Jacky Chen, Zissis Poulos, dorothy zhang\",\"doi\":\"10.2139/ssrn.3908626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning tools have been developed to generate synthetic data sets that are indistinguishable from available historical data. In this paper, we investigate whether the tools can be used for stress testing. In particular we test whether synthetic data can be used to provide reliable risk measures when the confidence levels are high. Our results are encouraging and suggest that synthetic data produced from the most recent 250 days of historical data are potentially useful for determining regulatory market risk capital requirements.\",\"PeriodicalId\":152939,\"journal\":{\"name\":\"Machine Learning eJournal\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3908626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3908626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

已经开发了机器学习工具来生成与可用历史数据无法区分的合成数据集。在本文中,我们研究了这些工具是否可以用于压力测试。特别是,我们测试了当置信度较高时,是否可以使用合成数据来提供可靠的风险度量。我们的研究结果令人鼓舞,并表明从最近250天的历史数据中产生的综合数据对于确定监管市场风险资本要求可能有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Data: A New Regulatory Tool
Machine learning tools have been developed to generate synthetic data sets that are indistinguishable from available historical data. In this paper, we investigate whether the tools can be used for stress testing. In particular we test whether synthetic data can be used to provide reliable risk measures when the confidence levels are high. Our results are encouraging and suggest that synthetic data produced from the most recent 250 days of historical data are potentially useful for determining regulatory market risk capital requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信