自主机器人信息物理通用安全与碰撞检测系统

H. Pikner, M. Malayjerdi
{"title":"自主机器人信息物理通用安全与碰撞检测系统","authors":"H. Pikner, M. Malayjerdi","doi":"10.21595/rsa.2021.22113","DOIUrl":null,"url":null,"abstract":"Multi-purpose mobile robots with a modular layout have become a hot research topic in recent years. The safe performance of these robot’s operations is relying on the low-level cyber-physical system (CPS). In this paper, the scientific goals underscore the analysis of the computational (cyber) units for low-level real-time fault monitoring. The purpose of these units is to monitor control signals issued by other (cyber) units or sensors and if there is a safety-critical problem, then predefined actions can be triggered. The safety controller was built and tested on the TalTech iseAuto platform. Based on the results, a new multi-layer universal safety system was developed. In the first layer, all signals and messages are checked to be in a suitable range or order. The second layer detects if an accident is happening using crash sensors. The third layer includes remote control switches support. If a failure or malfunction occurs, the emergency action plan is executed to stop the vehicle safely.","PeriodicalId":349478,"journal":{"name":"Robotic Systems and Applications","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyber-physical universal safety and crash detection system for autonomous robot\",\"authors\":\"H. Pikner, M. Malayjerdi\",\"doi\":\"10.21595/rsa.2021.22113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-purpose mobile robots with a modular layout have become a hot research topic in recent years. The safe performance of these robot’s operations is relying on the low-level cyber-physical system (CPS). In this paper, the scientific goals underscore the analysis of the computational (cyber) units for low-level real-time fault monitoring. The purpose of these units is to monitor control signals issued by other (cyber) units or sensors and if there is a safety-critical problem, then predefined actions can be triggered. The safety controller was built and tested on the TalTech iseAuto platform. Based on the results, a new multi-layer universal safety system was developed. In the first layer, all signals and messages are checked to be in a suitable range or order. The second layer detects if an accident is happening using crash sensors. The third layer includes remote control switches support. If a failure or malfunction occurs, the emergency action plan is executed to stop the vehicle safely.\",\"PeriodicalId\":349478,\"journal\":{\"name\":\"Robotic Systems and Applications\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotic Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/rsa.2021.22113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/rsa.2021.22113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模块化布局的多用途移动机器人是近年来研究的热点。这些机器人的操作安全性能依赖于底层网络物理系统(CPS)。在本文中,科学目标强调了对低级实时故障监测的计算(网络)单元的分析。这些单元的目的是监视其他(网络)单元或传感器发出的控制信号,如果存在安全关键问题,则可以触发预定义的动作。安全控制器在TalTech iseAuto平台上进行了构建和测试。在此基础上,开发了一种新型的多层通用安全系统。在第一层,检查所有信号和消息是否处于合适的范围或顺序。第二层使用碰撞传感器检测是否发生事故。第三层包括远程控制开关支持。如果发生故障或故障,则执行紧急行动计划以安全停止车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber-physical universal safety and crash detection system for autonomous robot
Multi-purpose mobile robots with a modular layout have become a hot research topic in recent years. The safe performance of these robot’s operations is relying on the low-level cyber-physical system (CPS). In this paper, the scientific goals underscore the analysis of the computational (cyber) units for low-level real-time fault monitoring. The purpose of these units is to monitor control signals issued by other (cyber) units or sensors and if there is a safety-critical problem, then predefined actions can be triggered. The safety controller was built and tested on the TalTech iseAuto platform. Based on the results, a new multi-layer universal safety system was developed. In the first layer, all signals and messages are checked to be in a suitable range or order. The second layer detects if an accident is happening using crash sensors. The third layer includes remote control switches support. If a failure or malfunction occurs, the emergency action plan is executed to stop the vehicle safely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信