基于粗糙集和主成分分析的图像去噪与增强

Wenzhun Huang, H. Wang, Zhe Liu, Liping Wang
{"title":"基于粗糙集和主成分分析的图像去噪与增强","authors":"Wenzhun Huang, H. Wang, Zhe Liu, Liping Wang","doi":"10.1109/ICICI.2017.8365189","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct research on novel image de-noising and enhancement algorithm based on rough set theory and the principal component analysis. Mathematically, image de-noising belongs to ill-posed inverse problem an effective way to solve the discomfort of basic qualitative is introducing a priori information about the image in image processing as the image de-noising is transformed into the well-posed problem. Under this guidance, we propose the novel perspective on the set theory and the principal component analysis based methodology. In the future research, we will integrate the experimental analysis for further optimization.","PeriodicalId":369524,"journal":{"name":"2017 International Conference on Inventive Computing and Informatics (ICICI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Image de-noising and enhancement based on rough set and principal component analysis\",\"authors\":\"Wenzhun Huang, H. Wang, Zhe Liu, Liping Wang\",\"doi\":\"10.1109/ICICI.2017.8365189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we conduct research on novel image de-noising and enhancement algorithm based on rough set theory and the principal component analysis. Mathematically, image de-noising belongs to ill-posed inverse problem an effective way to solve the discomfort of basic qualitative is introducing a priori information about the image in image processing as the image de-noising is transformed into the well-posed problem. Under this guidance, we propose the novel perspective on the set theory and the principal component analysis based methodology. In the future research, we will integrate the experimental analysis for further optimization.\",\"PeriodicalId\":369524,\"journal\":{\"name\":\"2017 International Conference on Inventive Computing and Informatics (ICICI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Inventive Computing and Informatics (ICICI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI.2017.8365189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Inventive Computing and Informatics (ICICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI.2017.8365189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了一种基于粗糙集理论和主成分分析的图像去噪增强算法。从数学上讲,图像去噪属于不适定逆问题,解决这一不适定性的有效方法是在将图像去噪转化为适定问题的过程中,在图像处理中引入图像的先验信息。在此指导下,我们提出了集论的新视角和基于主成分分析的方法。在未来的研究中,我们将结合实验分析进行进一步优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image de-noising and enhancement based on rough set and principal component analysis
In this paper, we conduct research on novel image de-noising and enhancement algorithm based on rough set theory and the principal component analysis. Mathematically, image de-noising belongs to ill-posed inverse problem an effective way to solve the discomfort of basic qualitative is introducing a priori information about the image in image processing as the image de-noising is transformed into the well-posed problem. Under this guidance, we propose the novel perspective on the set theory and the principal component analysis based methodology. In the future research, we will integrate the experimental analysis for further optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信