基于遗传算法和ESO方法的拓扑结构优化

H. Kajiwara, T. Hiroyasu, M. Miki, Akira Hashimoto
{"title":"基于遗传算法和ESO方法的拓扑结构优化","authors":"H. Kajiwara, T. Hiroyasu, M. Miki, Akira Hashimoto","doi":"10.1299/jsmeoptis.2006.7.167","DOIUrl":null,"url":null,"abstract":"To design a more economical structural form, it is necessary to optimize both the topology and shape of structures. To optimize topology, we propose a hybrid of Genetic Algorithm (GA) and Evolutionary Structural Optimization (ESO). This paper describes the considerations in applying the proposed method to topology structural optimization. Through numerical examples, the proposed method showed better search ability than GA or ESO methods alone. Moreover, this hybrid method makes it possible to design a more economical structural form.","PeriodicalId":107309,"journal":{"name":"International Conference on Climate Informatics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology structural optimization using a hybrid of GA and ESO methods\",\"authors\":\"H. Kajiwara, T. Hiroyasu, M. Miki, Akira Hashimoto\",\"doi\":\"10.1299/jsmeoptis.2006.7.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To design a more economical structural form, it is necessary to optimize both the topology and shape of structures. To optimize topology, we propose a hybrid of Genetic Algorithm (GA) and Evolutionary Structural Optimization (ESO). This paper describes the considerations in applying the proposed method to topology structural optimization. Through numerical examples, the proposed method showed better search ability than GA or ESO methods alone. Moreover, this hybrid method makes it possible to design a more economical structural form.\",\"PeriodicalId\":107309,\"journal\":{\"name\":\"International Conference on Climate Informatics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Climate Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/jsmeoptis.2006.7.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Climate Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jsmeoptis.2006.7.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了设计一种更经济的结构形式,有必要对结构的拓扑结构和形状进行优化。为了优化拓扑结构,我们提出了一种遗传算法(GA)和进化结构优化(ESO)的混合算法。本文介绍了将该方法应用于拓扑结构优化的注意事项。数值算例表明,该方法比单独的遗传算法和ESO算法具有更好的搜索能力。此外,这种混合方法使设计更经济的结构形式成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology structural optimization using a hybrid of GA and ESO methods
To design a more economical structural form, it is necessary to optimize both the topology and shape of structures. To optimize topology, we propose a hybrid of Genetic Algorithm (GA) and Evolutionary Structural Optimization (ESO). This paper describes the considerations in applying the proposed method to topology structural optimization. Through numerical examples, the proposed method showed better search ability than GA or ESO methods alone. Moreover, this hybrid method makes it possible to design a more economical structural form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信