Cu-Net:用于Oct图像视网膜分层分割的连续多类轮廓检测

Ashuta Bhattarai, C. Kambhamettu, Jing Jin
{"title":"Cu-Net:用于Oct图像视网膜分层分割的连续多类轮廓检测","authors":"Ashuta Bhattarai, C. Kambhamettu, Jing Jin","doi":"10.1109/ICIP46576.2022.9897516","DOIUrl":null,"url":null,"abstract":"Recent deep learning-based contour detection studies show high accuracy in single-class boundary detection problems. However, this performance does not translate well in a multi-class scenario where continuous contours are required. Our research presents CU-Net, a U-Net-based network with residual-net encoders which can produce accurate and uninterrupted contour lines for multiple classes. The critical factor behind this concept is our continuity module, containing an interpolation layer and a novel activation function that converts discrete signals into smooth contours. We find the application of our approach in medical imaging problems like retinal layer segmentation from optical coherence tomography (OCT) scans. We applied our method to an expert annotated OCT dataset of children with sickle-cell disease. To compare with benchmarks, we evaluated our network on DME and HC-MS datasets. We achieved an overall mean absolute distance of 6.48 ± 2.04µM and 1.97 ± 0.89µM, respectively 1.03 and 1.4 times less than the current state-of-the-art.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-Net: Towards Continuous Multi-Class Contour Detection for Retinal Layer Segmentation In Oct Images\",\"authors\":\"Ashuta Bhattarai, C. Kambhamettu, Jing Jin\",\"doi\":\"10.1109/ICIP46576.2022.9897516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent deep learning-based contour detection studies show high accuracy in single-class boundary detection problems. However, this performance does not translate well in a multi-class scenario where continuous contours are required. Our research presents CU-Net, a U-Net-based network with residual-net encoders which can produce accurate and uninterrupted contour lines for multiple classes. The critical factor behind this concept is our continuity module, containing an interpolation layer and a novel activation function that converts discrete signals into smooth contours. We find the application of our approach in medical imaging problems like retinal layer segmentation from optical coherence tomography (OCT) scans. We applied our method to an expert annotated OCT dataset of children with sickle-cell disease. To compare with benchmarks, we evaluated our network on DME and HC-MS datasets. We achieved an overall mean absolute distance of 6.48 ± 2.04µM and 1.97 ± 0.89µM, respectively 1.03 and 1.4 times less than the current state-of-the-art.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来基于深度学习的轮廓检测研究表明,在单类边界检测问题中具有较高的准确率。然而,在需要连续轮廓的多类别场景中,这种性能并不能很好地转化。我们的研究提出了CU-Net,一个基于u -net的网络,带有剩余网络编码器,可以为多个类别生成精确且不间断的等高线。这个概念背后的关键因素是我们的连续性模块,它包含一个插值层和一个将离散信号转换为光滑轮廓的新颖激活函数。我们发现我们的方法在医学成像问题中的应用,如光学相干断层扫描(OCT)的视网膜层分割。我们将我们的方法应用于镰状细胞病儿童的专家注释OCT数据集。为了与基准进行比较,我们在DME和HC-MS数据集上评估了我们的网络。我们实现的总体平均绝对距离为6.48±2.04µM和1.97±0.89µM,分别比目前最先进的技术小1.03和1.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu-Net: Towards Continuous Multi-Class Contour Detection for Retinal Layer Segmentation In Oct Images
Recent deep learning-based contour detection studies show high accuracy in single-class boundary detection problems. However, this performance does not translate well in a multi-class scenario where continuous contours are required. Our research presents CU-Net, a U-Net-based network with residual-net encoders which can produce accurate and uninterrupted contour lines for multiple classes. The critical factor behind this concept is our continuity module, containing an interpolation layer and a novel activation function that converts discrete signals into smooth contours. We find the application of our approach in medical imaging problems like retinal layer segmentation from optical coherence tomography (OCT) scans. We applied our method to an expert annotated OCT dataset of children with sickle-cell disease. To compare with benchmarks, we evaluated our network on DME and HC-MS datasets. We achieved an overall mean absolute distance of 6.48 ± 2.04µM and 1.97 ± 0.89µM, respectively 1.03 and 1.4 times less than the current state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信