{"title":"迭代特征分解的极大似然框架","authors":"A. Robles-Kelly, E. Hancock","doi":"10.1109/ICCV.2001.937582","DOIUrl":null,"url":null,"abstract":"This paper presents an iterative maximum likelihood framework for perceptual grouping. We pose the problem of perceptual grouping as one of pairwise relational clustering. The method is quite generic and can be applied to a number of problems including region segmentation and line-linking. The task is to assign image tokens to clusters in which there is strong relational affinity between token pairs. The parameters of our model are the cluster memberships and the link weights between pairs of tokens. Commencing from a simple probability distribution for these parameters, we show how they may be estimated using an EM-like algorithm. The cluster memberships are estimated using an eigendecomposition method. Once the cluster memberships are to hand, then the updated link-weights are the expected values of their pairwise products. The new method is demonstrated on region segmentation and line-segment grouping problems where it is shown to outperform a noniterative eigenclustering method.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A maximum likelihood framework for iterative eigendecomposition\",\"authors\":\"A. Robles-Kelly, E. Hancock\",\"doi\":\"10.1109/ICCV.2001.937582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an iterative maximum likelihood framework for perceptual grouping. We pose the problem of perceptual grouping as one of pairwise relational clustering. The method is quite generic and can be applied to a number of problems including region segmentation and line-linking. The task is to assign image tokens to clusters in which there is strong relational affinity between token pairs. The parameters of our model are the cluster memberships and the link weights between pairs of tokens. Commencing from a simple probability distribution for these parameters, we show how they may be estimated using an EM-like algorithm. The cluster memberships are estimated using an eigendecomposition method. Once the cluster memberships are to hand, then the updated link-weights are the expected values of their pairwise products. The new method is demonstrated on region segmentation and line-segment grouping problems where it is shown to outperform a noniterative eigenclustering method.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A maximum likelihood framework for iterative eigendecomposition
This paper presents an iterative maximum likelihood framework for perceptual grouping. We pose the problem of perceptual grouping as one of pairwise relational clustering. The method is quite generic and can be applied to a number of problems including region segmentation and line-linking. The task is to assign image tokens to clusters in which there is strong relational affinity between token pairs. The parameters of our model are the cluster memberships and the link weights between pairs of tokens. Commencing from a simple probability distribution for these parameters, we show how they may be estimated using an EM-like algorithm. The cluster memberships are estimated using an eigendecomposition method. Once the cluster memberships are to hand, then the updated link-weights are the expected values of their pairwise products. The new method is demonstrated on region segmentation and line-segment grouping problems where it is shown to outperform a noniterative eigenclustering method.