时变分-半变分不等式系统的Levitin-Polyak适定性

Huamin Luo, Chang-jie Fang
{"title":"时变分-半变分不等式系统的Levitin-Polyak适定性","authors":"Huamin Luo, Chang-jie Fang","doi":"10.1117/12.2679215","DOIUrl":null,"url":null,"abstract":"In the article, at the first, the new notion of LP well-posedness has been generalized in the paper. the LP well-posedness is related to a approximate function ℎ1(𝜀, 𝑢) and ℎ2(𝜀, 𝑢) rather than simple parameter 𝜀. And so as to to discuss the LP well-posedness, then some different metric characterizations of LP well-posedness was established and approximating solution set was constructed. In the end some equivalence results of strong LP well-posedness (resp., in the generalized sense) is proved.","PeriodicalId":301595,"journal":{"name":"Conference on Pure, Applied, and Computational Mathematics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levitin-Polyak well-posedness for systems of time-dependent variational-hemivariational inequalities\",\"authors\":\"Huamin Luo, Chang-jie Fang\",\"doi\":\"10.1117/12.2679215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, at the first, the new notion of LP well-posedness has been generalized in the paper. the LP well-posedness is related to a approximate function ℎ1(𝜀, 𝑢) and ℎ2(𝜀, 𝑢) rather than simple parameter 𝜀. And so as to to discuss the LP well-posedness, then some different metric characterizations of LP well-posedness was established and approximating solution set was constructed. In the end some equivalence results of strong LP well-posedness (resp., in the generalized sense) is proved.\",\"PeriodicalId\":301595,\"journal\":{\"name\":\"Conference on Pure, Applied, and Computational Mathematics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Pure, Applied, and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2679215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Pure, Applied, and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先推广了LP适定性的新概念。LP适定性与近似函数 1(,𝑢)和 2(,𝑢)有关,而不是简单的参数。为了讨论LP适定性,建立了LP适定性的不同度量特征,构造了近似解集。最后给出了一些强LP适定性的等价结果。(广义上的)被证明了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Levitin-Polyak well-posedness for systems of time-dependent variational-hemivariational inequalities
In the article, at the first, the new notion of LP well-posedness has been generalized in the paper. the LP well-posedness is related to a approximate function ℎ1(𝜀, 𝑢) and ℎ2(𝜀, 𝑢) rather than simple parameter 𝜀. And so as to to discuss the LP well-posedness, then some different metric characterizations of LP well-posedness was established and approximating solution set was constructed. In the end some equivalence results of strong LP well-posedness (resp., in the generalized sense) is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信